Back when I was a rube just starting to learn algebraic topology, I started thinking about a unifying platform for mathematics research, a sort of dynamical Wikipedia for math that would converge, given good data, to some global “truth”. (My model: unification programs in theoretical and experimental physics.) The reason was simple—what I *really* wanted was a unifying platform for AI research, but AI was way, way too hard. I didn’t have a formal language, I didn’t have a type system or a consistent ontology between experiments, I didn’t have good correspondences or representation theorems between different branches of AI, and I certainly didn’t have category theory. Instinctively, I felt it would be easier to start with math. In my gut, I felt that any kind of “unifying” platform *had* to start with math.

Recently I met some people who have also been thinking about different variants of a “Wikipedia for math” and, more generally, about tools for mathematicians like visualizations, databases, and proof assistants. People are coming together; a context is emerging; it feels like the time is ripe for something good! So I thought I’d dust off my old notes and see if I can build some momentum around these ideas.

- In part 1, examples, examples, examples. I will discuss type systems for wikis, Florian Rabe’s “module system for mathematical theories“, Carette and O’Connor’s work on theory presentation combinators, and the pro/con of a scalable “library” of mathematics.
- In part 2, I’d like to understand what kind of theoretical foundation would be needed for an attack on mathematical
*pragmatics*, and check whether homotopy type theory could be a good candidate. - In part 3, I will talk about
*mathematical experiments*(everything we love about examples, done fancier!), their relationship with “data”, and what they can do for the working mathematician.