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ABSTRACT
We develop a diagrammatic tool for constructing correlations be-

tween random variables, called an abstract indicator framework.

Abstract indicator frameworks are modeled o� operational (key per-

formance) indicator frameworks as they are used in city planning

and project governance, and give a rigorous, statistically-motivated

process for constructing operational indicator frameworks.
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1 INTRODUCTION
We take as our starting point a diagrams of simple correlations, as

below:
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�is diagram correlates the measurement variables of an air pol-

lution monitoring system with other, partially-observable variables

like tra�c composition, mechanical turbulence, and the presence of

sunlight. It presents an intuitive and apparently useful description

of a system at large. We would like to clarify the meaning of this di-

agram, and of others like it, by giving its interconnections a precise

mathematical meaning. Clarifying the meaning of the diagram will

not only make it more useful; it will allow us to connect this local,

correlation-based picture of a system with other local pictures, as

well as with more sophisticated scienti�c models of the world.

In this paper, we develop abstract indicator frameworks, a dia-

grammatic tool for constructing causally-linked sets of random

variables and their correlations. Abstract indicator frameworks are

modeled o� operational (key performance) indicator frameworks,

especially as they are used in city planning and project governance.

Such operational indicator frameworks have three main uses: (1)

to communicate quantitative information and strategic priorities

to a wide audience, (2) to enable policy reactions to data, especially

in the optimization of processes, and (3) to restrict a�ention to a

set of ‘relevant’ indicators—thus discarding the information from

many other, ‘non-relevant’ indicators.

In city planning, there are several strategy-se�ing frameworks

for constructing operational indicator frameworks, from balanced

scorecards [3] to SMART [2] to more specialized urban planning

frameworks; in such frameworks, the indicators are o�en designed

by mayors, chief strategy o�cers, and sizable expert commi�ees in

tandem with new projects, new policies, and new processes. Even

assuming that the participants adhere to a framework, the process

of choosing indicators is o�en ad hoc, the results do not account for

statistical relationships between the indicators, and the generated

data is hard to translate across localities.

We propose an alternative. Instead of constructing operational in-

dicator frameworks expensively and internally, meaning indicator-

by-indicator, we can specify them abstractly and externally, by

means of their causal and statistical relationships to other, already-

extant sets of indicators. Our approach is especially suited to situa-

tions where heterogeneous data is distributed across many projects

and many localities.

For example, cities are o�en interested in understanding the

second-order impacts of speci�c projects, e.g. the impacts on health,

crime, and jobs of a smart shu�le system. Assuming the existence of

a local indicator framework for the shu�le system, and the existence

of a top-level indicator framework representing broad priorities

such as health, crime, jobs, and so on, then we can construct a me-

diating indicator set whose indicators satisfy certain statistical and
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causal relationships generated by the given indicator frameworks;

these mediating indicators represent the second-order impacts of

the local project to the city’s other priorities.

�is motivates the de�nition of abstract indicator frameworks,

which we de�ne as the objects of a certain “category of diagrams

of random variables”, Ind. We will apply category theory, originally

developed to relate and analyze topological spaces, as an e�cient

language for relating and analyzing the causal and statistical aspects

of indicator frameworks.

Let X stand for an indicator set. Abstract indicator frameworks

have a notion of process that transforms one indicator set into an-

other, a notion of state that represents the process of picking a

speci�c indicator in X, and a notion of e�ect that represents the

process of “measuring” or computing the correlation with respect

to a speci�c indicator in X. Processes, states, and e�ects are repre-

sented, respectively:

f
X

Y

�ese are needed to capture the operations of composing processes

in sequence, called composition, and combining them in parallel,

called tensoring. �e composition д ◦ f (�rst f , then д) and tensor

f ⊗ д are represented as:

f

д

f д

We call any formalism with a notion of composition and tensor-

ing a process theory. �e semantics of process theories and their

diagrams are governed by the theory of monoidal categories, which

is surveyed in [11]. �e goal of the paper is to specify an appropriate

symmetric monoidal category, Rand, representing the appropriate

operations on random variables, a�er which we can de�ne a causal

model as a strong monoidal functor from a causal theory into Rand.

�ese causal models—essentially, diagrams in Rand—will be the

promised abstract indicator frameworks. In Section 2, we will con-

sider a preliminary version of Rand along with some of the possible

alternatives. In Section 3, we will give the statistical justi�cation for

our choice of Rand, review the notion of a causal model from [4],

and then give the full de�nition of abstract indicator frameworks.

2 BACKGROUND
As mentioned above, there are a variety of approaches to choosing

indicator frameworks as part of the process of strategic priorities.

Of the many specialized approaches to choosing indicator frame-

works in various �elds, Niemejer and de Groot [9] have suggested

a similar methodology for choosing environmental indicator sets

based on explicit causal networks of environmental forces and so-

cietal response; while their methodology is still largely qualitative

rather than formal or statistical, their paper handily illustrates how

(diagrams of) causal models can facilitate the selection of relevant

indicator sets. In statistics, Horvath [6] also takes a compositional

approach to correlation by focusing on weighted correlation net-

works, which represent random variables by nodes in a graph and

edges between variables by a so� threshold on their correlation.

�ese correlation networks have proved useful for analyzing high-

dimensional data sets, especially gene expression data.

Even within the constraints of a process theory, there are still

a number of diagrammatic approaches to probability. In this sec-

tion, we will go over three examples: the traditional Hilbert space

interpretation of random variables, the original category of proba-

bilistic mappings suggested by Lawvere [8], and the diagrammatic

approach of Coecke and Spekkens [1] to Lawvere’s work. We

also brie�y discuss graphical models such as those surveyed in [7],

which are the most obvious applications of [8] and [1], e.g. see [4].

�e traditional approach, which we call Rand, uses the fact that

real-valued random variables over some �xed probability space

(Ω,F ,P) form a Hilbert space H where the inner product 〈X ,Y 〉 is

just the covariance E(XY ). Assuming that we restrict ourselves to

standard variables with zero mean and unit variance, the covariance

equals the correlation, and we can represent both by the inner

product in Rand. �is inner product can be represented by a process

diagram, namely as the composition of a state and an e�ect in Rand:

Cor(X ,Y ) = Cov(X ,Y ) = 〈X ,Y 〉 =

X

Y

As we will see in the next section, Rand is actually already very

close to what we want; the problem is that the obvious categorical

interpretation of Rand does not give a natural way of analyzing the

data of “intermediate” correlations.

Rand is closely related to older work on the categorical founda-

tions of probability initiated by Lawvere in [8] and developed in

Giry [5]:

De�nition 2.1. �e category Stoch of stochastic processes is de-

�ned by the following data:

(1) objects are measurable spaces (A, ΣA ) of sets A with a σ -

algebra ΣA
(2) morphisms P : (A, ΣA ) → (B, ΣB ) are stochastic kernels,

i.e. functions P : A × ΣB → [0, 1] that assign to (a,σB ) the

probability of σB given a, denoted P (σB |a)
(3) composition Q ◦ P : A × ΣC → [0, 1] of P : (A, ΣA ) →

(B, ΣB ) and Q : (B, ΣB ) → (C, ΣC ) is de�ned by

(Q ◦ P ) (σC |a) =

∫
b ∈B

Q (σC |b)dPa ,

i.e. marginalization over B

As suggested by the notation, morphisms in Stoch represent

probability measures on an event/outcome space (A, ΣA ). If we

restrict to the subcategory FinStoch whose objects are �nite mea-

surable spaces—since the outcomes are �nite, one can imagine these

spaces as sets of natural numbers {1, ...,n}—then we can think of

stochastic kernels are stochastic matrices, i.e. matrices whose col-

umn entries sum to 1. Taking 1 = ({∗}, Σ∗) as the monoidal unit,

we can see that a probability distribution in FinStoch is just a vec-

tor P : 1 → (A, ΣA ) whose entries are the probabilities of all the

possible atomic outcomes in A. �e usual tensor product described

in Stoch is the functor ⊗ : Stoch × Stoch→ Stoch that assigns to

two probability distributions P : 1 → (A, ΣA ), Q : 1 → (B, ΣB )
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their product measure, i.e. the map PQ : 1→ (A × B, ΣA ⊗ ΣB ) s.t.

PQ (∗, (a,b)) = P (∗,a)Q (∗,b).
Using the language of symmetric monoidal categories,, Coecke

and Spekkens [1] give a graphical calculus for FinStoch and use

it to elaborate Bayesian reasoning (in particular, a diagrammatic

representation of Bayes’ rule). As above, objects of FinStoch are

natural numbers, morphisms from m to n are n × m stochastic

matrices, composition is matrix product, and the monoidal product

is the matrix tensor product. States are probability distributions

over the set 1, ...,n:

P : 1→ A = (p1, ...,pn ) such that

n∑
j=1

pj = 1

A joint state is a state over the composite object 1, ...,mn, of the

form

P

A joint state is “uncorrelated”—one should be careful, since this is

correlation between probability distributions, not between random

variables per se—when it can be decomposed into a tensor product,

and perfectly correlated when it can be represented as a delta func-

tion. Uncorrelated and perfectly correlated joint states are depicted,

respectively:

P Q : 1→ A ⊗ B = (p1q1, ...,pnqm )

: I → A ⊗ A = (δi,i′ ∈ {1, ...,n}.

A perfectly anti-correlated joint state in FinStoch is just a cup with

a NOT-gate a�ached to one end. More generally, any correlation

can be obtained by a�aching a suitable box to one of the ends of

the cup.

�ere are two major problems with this graphical formalism,

and with Stoch and FinStoch in general. First and foremost, there

is not a very convenient way of talking about random variables.
Technically, a real-valued random variable is given by the diagram

below, of a measurable function X : (Ω, ΣΩ ) → (R, ΣR) which

takes possible outcomes in Ω to their numerical representations in

R (technically, X is not a function but a stochastic matrix whose

columns represent point probabilities), a probability measure P :

1 → (Ω, ΣΩ ) on the outcomes in Ω, and �nally the pushforward

X (P ) of P along X , which represents the probability distribution of

the random variable X .

1 (Ω, ΣΩ )

(R, ΣR)

P

X (P ) X

Besides being di�cult to work with, the point of view of this paper

is that probability measures are not random variables nor are they

su�cient replacements; a probability measure is something prob-

ability theorists invented in order to talk about random variables.

While useful in the context of Bayesian networks, which can be

articulated primarily in terms of stochastic processes, probability

measures are less visible in cases driven by data and by correlational

arguments.

�e second problem is that there is not a good interpretation of

e�ect, i.e. of “measuring” or computing something with respect to

a speci�c state. An e�ect in FinStoch

X

is de�ned to be a morphism X † : (A, ΣA ) → 1, i.e. a function

X † : A × Σ∗ → [0, 1]. �e problem is that 1 is terminal in Stoch:

there is only one possible morphism from any object to 1 due

to the constraint on morphisms of being a probability measure.

In particular, for any (A, ΣA ) and for all a ∈ A, the unique map

X † : (A, ΣA ) → 1 is given by X † (∗|a) = 1 and X † (∅|a) = 0.

In other words, any ‘measurement’ of a state (i.e. a probability

distribution) in FinStoch and Stoch simply kills the state.

Finally, in Bayesian statistics and machine learning, a variety

of more generic graphical approaches, called graphical models,

have been developed to model the conditional (in)dependence of

multivariate random variables; the joint distribution over all the

random variables in a graphical model is the product of their condi-

tional distributions. Among the most familiar examples of graphical

models are (directed) Bayesian networks and (undirected) Markov

networks. �e upshot is that complex questions about joint distri-

butions of many interrelated variables can be answered in terms

of the topology of the graph. We mention these graphical models,

and especially Bayesian networks (and by extension stochastic ma-

trices), since they ground many existing approaches to integrating

causality with probability, including that of Stoch and FinStoch.

3 INDICATOR FRAMEWORKS
In this section, we de�ne the category Ind of abstract indicator

frameworks and give an example, with diagrams, of a concrete

indicator framework.

Before giving the de�nition of the category Ind of abstract in-

dicator frameworks, we will go through some of the statistical

justi�cation. Suppose that we have a correlation between random

variables X and Y and another one between Y and Z . What can we

say about the correlation between X and Z? One obvious guess

would be

Cor(X ,Z ) = Cor(X ,Y )Cor(Y ,Z ). (1)

Of course we know that Equation 1 is, in general, false.
1

But it is,

under certain conditions, still the best guess. �e following result

is a standard exercise in statistics.

Lemma 3.1. If a = Cor(X ,Y ) and b = Cor(Y ,Z ), then

Cor(X ,Z ) ≥ ab −
√

1 − a2

√
1 − b2

(2)

Cor(X ,Z )〉 ≤ ab +
√

1 − a2

√
1 − b2

(3)

Proof. WLOG, assume that A,B,C are standard variables with

zero mean and unit variance, since the correlation is invariant under

changes to mean and variance. We can write X = aY + EY ,X and

1
Correlations are rarely composed in practice because (1) the computation is usually

false and (2) because we can usually compute the composite correlation directly from

the data. It is only when we lack the data (which is quite o�en in studies of complex

systems) that we use a causal model to infer the correlation. Unfortunately, causal

models are o�en invoked in the process of imposing a learned model such as a Kalman

�lter or a dynamical Bayesian network, which will o�en con�ate the statistical and

causal contributions.
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Z = bY + EY ,Z where, by construction, EY ,X ,EY ,Z are random

variables uncorrelated with Y .

�en 〈X ,Z 〉 = Cor(X ,Z ) = 〈aY + EY ,X ,bY + EY ,Z 〉 = ab +
〈EY ,X ,EY ,Z 〉, and we can use the Cauchy-Schwarz inequality to

bound 〈EY ,X ,EY ,Z 〉 from above and from below, giving the lemma.

�

�e lemma tells us that there is a range of possible values, cen-

tered around Cor(X ,Y )Cor(Y ,Z ), for the composite correlation;

unfortunately, in practice that range can so large as to be useless.

In such a situation, we may ask what is the obstruction, given

Cor(X ,Y ) and Cor(Y ,Z ), to knowing the canonical or ‘true’ cor-

relation of their composite, and whether we can reduce or get

around that obstruction. Reading the proof of the lemma, we

know the obstruction is just the correlation 〈EY ,X ,EY ,Z 〉; that is,

if 〈EY ,X ,EY ,Z 〉 were 0, our guess would be valid.

One may also derive the above result from the de�nition of the

partial correlation of X and Z , �xing Y . Recall that the partial cor-

relation ρXZ ·Y is de�ned as the correlation between the residuals

of X and of Z , �xing Y . In terms of their component correlations,

ρXZ ·Y =
Cor(X ,Z ) − Cor(X ,Y )Cor(Y ,Z )√

1 − Cor(X ,Y )2
√

1 − Cor(Y ,Z )2
.

�us

〈EY ,X ,EY ,Z 〉 = ρXZ ·Y

√
1 − Cor(X ,Y )2

√
1 − Cor(Y ,Z )2.

In other words, Equation 1 is correct just when the partial correla-

tion ρXZ ·Y = 0, when Cor(X ,Y ) = 1 or −1 (i.e. X and Y are linear

functions of each other), or when Cor(Y ,Z ) = 1 or −1. �is allows

us to produce another guess:

“Cor(X ,Z )” = Y s.t. ρXZ ·Y = 0 (4)

Explicitly, EY ,X measures the nonlinear component of the rela-

tion between X and Y . But one may also think of it as a measure

of the ‘noise’ or ‘error’ between X and Y , at least as it concerns

the correlation. �e idea of Equation 4 is that, if we are lucky in

choosing Y , then the noise factors EY ,X and EY ,Z will “cancel out”

to produce the true correlation Cor(X ,Z ) = Cor(X ,Y )Cor(Y ,Z ).
Heuristically, we can represent this process as below:

Cor(X ,Z ) =

X

Z

=

Z

X

Y

Y

+

EY ,X

EY ,Z
?

=

“EY ,Z ”

Z

X

“EY ,X ”

“Y ”

�at is, the correlation betweenX and Z can be computed by apply-

ing a transformation “EY ,X ”, representing some sort of structured

noise factor, then applying a transformation “EY ,Z ” that cancels

out the noise introduced by “EY ,X ”.

We can formalize this intuition. Recall that real-valued, square-

integrable random variables over a given probability space form a

Hilbert space L2 (Ω, Σ,P) whose inner product is just the covariance.

De�nition 3.2. �e category of random variables, Rand, is de�ned

by the following data:

(1) objects are �nite-dimensional Hilbert spaces

X = L2 (ΩX , ΣX ,PX )

of square-integrable random variables (under the equiv-

alence relation X1 ∼ X2 if PX (X1 = X2) = 1) with inner

product 〈X ,Y 〉 = E (XY ), de�ned over probability spaces

(ΩX , ΣX ,PX ), with an associated basisBX = {X1,X2, ...,Xn }∪
1, where 1 is the random variable with constant value 1.

(2) morphisms F : X → Y are bounded linear operators

(3) the composition is the usual composition of bounded linear

operators

(4) the tensor product of X and Y is the pushout over their

joint support in ΩX × ΩY

Example 3.3. Suppose that the transportation department buys

a new bus and designates an indicator, X , that counts the number

of riders on the bus per day. Elsewhere, the education department

tracks an indicator, Z , that counts the number of students per day

who are absent from class across the whole city. Assume that X
and Z live in indicator sets X andZ.

First, we “integrate” the data by computing X ⊗ Z, so that the

correlation is computed only on days for which X ,Z both have

data. We compute the correlation: then the correlation may be

very small, or conversely it may be absurdly high, especially if

there is some confounding variable correlated with both X and Z ,

e.g. an economic boom. Suppose the federal government tracks

a separate variable, W , on aggregate economic performance per

quarter. �e �rst step is to get rid of the in�uence ofW , i.e. compute

the residuals XW ,ZW of X ,Z resulting from their linear regression

with W . Assuming that X and Z live in indicator sets X and Z

respectively, and thatW lives in both X andZ, we can represent

computing the residuals as applying transformations ρW ,ηW on

X ∈ X and Z ∈ Z, respectively:

ρW

X

= XW

Z

ηW = ZW

For variables X ,Y , let us denote the linear regression of X with

respect toY byX |Y . ρW and ηW are indeed morphisms in Rand, i.e.

bounded linear operators, since the residual of a linear regression

can be wri�en in the form XW = X −X |W = X − (a1+bW ), where

a,b are constants. (Technically, everything above happens in the

“larger” Hilbert space X ⊗ Z; ρW ,ηW are projections from this
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larger space.) �en by de�nition, we have

ρXZ ·W =

ηW

Z

X

ρW

As shorthand, we will sometimes refer to the space of random

variables X as a set of variables or indicators; in such cases, we

always mean the basis set of random variables, BX .

It will help to think of random variables as representing column

vectors or “dimensions” of data in a table of such data, where row

vectors in that table represent particular data points. �e correlation

between two column vectors is just their sample correlation. �is

has several bene�ts: it makes the inner product (correlation) and

tensor product (entity resolution) very concrete, it is what a data

analyst actually looks at, and it highlights the restrictions and

challenges imposed by the presence and absence of data. In fact,

we can de�ne a category Data explicitly in such terms:

De�nition 3.4. �e category of R-valued data tables, Data, is

de�ned by the following data:

(1) objects X = (X,ΩX , IX ) of Data are m × n tables of R-

valued data vectors whose rows are assigned an index

key given by IX : ΩX → R and whose columns, BX =
{X1, ...,Xn }, represent indicators

(2) morphisms f : X → Y are linear transformations of the

column values of X by vector addition (of other columns

in X) and scalar multiplication

(3) the composition is just the matrix product

(4) the tensor product of X ⊗Y is the integrated table of their

data values over a table of linkages, S ⊂ ΩX × ΩY

Suppose we are working in a 3-dimensional Hilbert space X

with a basis of random variables BX = {X ,Y ,Z }. In this basis, the

random variable EY ,X is just the vector X − 〈X ,Y 〉Y (and similarly

with EZ ,X ), but the problem with this space… is that there is no

problem! In Rand, having a basis in X ,Y ,Z corresponds to the

observation, in Data, that we already have the tabular data we need

to compute 〈X ,Z 〉 directly. But in many situations of interest in a

complex, open system, e.g. in computing the second-order impacts

of local and/or technical projects, such broad-based data is di�cult

to obtain.

So we lack data. But to take just one example, in a database

se�ing there are ways to reason about “missing data”, e.g. database

nulls, especially when that data is the subject of a data migration

or integration, as described in [12]. In particular, one can impose a

set of algebraic equations that each null value must satisfy, where

the equations are given by a diagram of database schema mappings.

More generally, almost every diagram in a category articulates a

set of constraints on the objects of that category.

Example 3.5. Recall our earlier example, where X stands for the

number of riders on a particular bus in a city, and Z stands for

the number of absent students across a city. Suppose that we have

already controlledX andZ for economic performance (i.e.W ) along

with any number of other confounding variables, and that we have

found (or suspect) a small but signi�cant correlation between X
and Z . We are now interested in understanding how X correlates

with Z .

�ere may be a variety of possible explanations for why this

correlation exists: maybe dropping the price of a ticket (thus pro-

moting more bus ridership) allows more students to go to school,

or perhaps additional bus ridership decreases tra�c, which gives

harried parents more time to track their truant children. Without

choosing any one explanation, we can represent the statistical prop-

erties of a set of mediating, “explanatory” variables Y by a ‘sum’

of the possible explanations:

Cor(X ,Z ) =
∑
Y ∈Y

*......................
,

ηY

Z

X

ρY

Y

+//////////////////////
-

(5)

�e equation above succinctly represents a set of constraints that

we can impose on the intermediate framework Y , and motivates

the following de�nition.

De�nition 3.6. A mediating framework between two spaces of

random variables X,Z is a space of random variables Y such that

Equation 5 is satis�ed for all variables X ∈ X,Z ∈ Z.

Rand, Data, and the notion of mediating indicator set supply the

basic statistical foundation for a theory of indicator frameworks. We

would now like to incorporate a causal foundation. �ere are several

reasons for doing so. First: many statistical arguments, e.g. partial

correlation, actually rely on an implicit choice of causal model—

see discussions related to confounding and mediating variables

by Pearl [10], among others. For example, given three random

variables X ,Y ,Z ; the partial correlations ρXZ ·Y , ρXY ·Z , or ρYZ ·X
are all equally valid; which one we take as ‘true’ depends on which

of the following causal structures we believe is true:

X

Y

Z Y

X

Z X

Z

Y

Second, many operational indicator frameworks are constructed

based on experts’ causal models of the indicators, e.g. as in [9] or

as in the air pollution diagram shown at the very beginning of this

paper. Any story of indicator frameworks would be incomplete

without mentioning causation. And third, the pa�ern developed

here for causation will be useful later, when we want to incorporate

not only causal models but arbitrary scienti�c models (such as those

in Bayesian networks) into our indicator frameworks.
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We recall the de�nition of causal theory from Fong [4], as a cer-

tain symmetric monoidal category induced from a directed acyclic

graph (i.e. the causal structure), such as any of the three graphs

above. Without going into the details, the idea is that given such

a causal structure, we can specify a symmetric monoidal category

whose objects are collections of the le�ers {X ,Y ,Z }, and whose

morphisms are generated by the counit (representing ‘deletion’)

and comultiplication (representing ‘copying’), depicted respectively

by

and by a set of causal mechanisms generated from the causal struc-

ture, [A] : ∅ → A, [B] : ∅ → B, and [C |AB] : AB → C , depicted

as

A B
C |AB

Given a causal theory, i.e. a symmetric monoidal category, we

can de�ne a model of that causal theory C in Rand as a strong

monoidal functor F : C → Rand. To specify such a functor, it

su�ces to de�ne its behavior on every atomic variable and every

generating map in C, i.e. the counit, comultiplication, and causal

mechanisms of C, since the values of the functor on the rest of

C is speci�ed up to isomorphism by the de�nition of a strong

monoidal functor. For example, if A is an atomic causal variable of

the causal theory C, then F sends A to a one-dimensional Hilbert

space, e.g. one with basis set {X }. On tensor products of atomic

causal variables, F (A ⊗ B) gives the tensor product F (A) ⊗ F (B),
i.e. the space of random variables with basis set {F (A), F (B)} and

probabilities inherited from the product measure. On morphisms,

F ([A]) : F (∗) → F (A) is just the single random variable in F (A), and

a causal mechanism [C |AB] becomes a linear operator F ([C |AB]) :

F (A ⊗ B) → F (C ).
Note that diagrams in the causal theory do not, typically, give rise

to diagrams of the same shape in Rand. For example, a confounding

variable Y with causal structure X ← Y → Z will typically gener-

ate the diagram corresponding to ρXZ ·Y . In general, each strong

monoidal functor C → Rand converts a causal theory into a certain

“package” of related indicator sets, where the operational indicator

framework is represented by the terminal leaves of the causal the-

ory. Picking the appropriate functor constitutes an optimization

problem.

We can now state the de�nition of Ind.

De�nition 3.7. �e category Ind of abstract indicator frameworks

is de�ned by the following data:

(1) an object I of Ind is a strong symmetric monoidal functor

C → Rand from a causal theory C to the category of

random variables.

(2) a morphism η between abstract indicator frameworks is

a natural transformation of strong symmetric monoidal

functors

In other words, an object of Ind represents a diagram in Rand,

whose nodes are indicator sets and whose edges have been orga-

nized to represent the various relationships between indicator sets.

One may directly compare Indwith the category of stochastic causal

models in [4], which are generalizations of Bayesian networks.

4 CONCLUSION
In this paper, we sought to give a rigorous mathematical alternative

to the traditional, indicator-by-indicator process of constructing

indicator frameworks, especially in city planning and project gov-

ernance. We proposed that indicator frameworks could be de�ned

(and optimized) by means of their relationships to other indicator

frameworks. �ese relationships were probabilistic as well as causal.

�erefore, we sought to develop a semantics for the problem of

constructing indicator frameworks that could accommodate both

probabilistic and causal modes of reasoning.

We examined several options for the semantics of probability, in-

cluding Stoch [8], FinStoch, and their corresponding diagrammatic

representations [1]. A�er re�ecting on the practical necessities of

data analysis, we decided to base our construction on a category

more directly in terms of random variables and correlations, and

de�ned the symmetric monoidal category Rand of (spaces of) ran-

dom variables. We then introduced the idea of a causal model from

[4], and used this to motivate the de�nition of the category Ind
of abstract indicator frameworks as models of a causal theory in

Rand.

We then used Ind as the se�ing for an optimization problem: how

to construct a mediating indicator framework that best explains

the relationship between a given set of indicators, such as those

of a specialized project in a city, and another set of indicators,

such as headline indicators of broad interest to the public. Such a

mediating framework can be used to answer the question, “what

are the secondary impacts of my project?”

�is paper is the subject of ongoing research; future versions will

address applications to more complicated, real-world examples in

city administration, as well as the integration of other mathematical

models beyond causal ones into the framework. Other additional

future work include the possibility of studying the constraints on

data-supported applications introduced by constraints on their un-

derlying indicators, an analysis of how to translate an “ontological

model” of the event space into constraints on the data, as well as

closer examinations of the phenomenon of tensoring or ‘gluing’

data sets and the possible obstacles such gluings may introduce to

producing a consistent global picture of the complex system.
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