
Questions and speculation on learning and
cohomology, Version 3

Joshua Tan

April 23, 2018

Abstract

I have tried to formulate a draft of some things I have been thinking at
the beginning of my doctorate, in order to be able to get some feedback.
Any comments or corrections are more than welcome. In particular, I
would be very grateful for concrete (possibly partial) answers, for opinions
on whether questions are interesting or not interesting, and for advice on
things to read which I am unaware of. I apologize in advance for being
too brief and not defining things in many places. I expect to revise this
document as I get feedback and learn more. Version 3 will be the last
major update to this document, as I focus attention on my doctoral thesis.
I am still very interested in obtaining feedback on the ideas expressed here!

Contents

1 Introduction 4
1.1 How to read this essay . 4
1.2 Acknowledgements . 5
1.3 Examples of connections between AI and geometry 5
1.4 Examples of questions related to AI 6
1.5 A question . 7
1.6 Reasons for studying cohomology as an AI researcher 7

2 Very brief review of AI 8
2.1 Approach: symbolic methods . 8
2.2 The extension to knowledge representation, part I 9
2.3 Approach: statistical inference 13
2.4 Approach: connectionism . 16
2.5 Approach: situated cognition . 18

3 Very brief review of algebraic topology 22
3.1 Axiomatics . 24
3.2 The category of spectra . 25
3.3 The derived setting . 28

1

3.4 Model categories . 30
3.5 Brown representability . 32
3.6 A list of topological constructions 34

4 Organizing principles in algebraic geometry 36
4.1 A very brief review of sheaf theory 39
4.2 Good cohomology, part 1 . 46
4.3 A very brief review of sheaf cohomology 51
4.4 Coherent algebraic sheaves . 54
4.5 Serre duality . 56
4.6 Good cohomology, part 2 . 59
4.7 The Weil conjectures . 62

5 Organizing principles in machine learning 67
5.1 A very brief review of computational learning theory 69
5.2 A very brief review of sample compression 72
5.3 A very brief review of AdaBoost 77
5.4 Sheaf cohomology for AdaBoost 87

5.4.1 Background . 89
5.4.2 An analogy . 92
5.4.3 Cohomology . 93
5.4.4 Conjectures . 94

5.5 Sample compression schemes via cubical complexes 98
5.6 Invariant methods for machine learning 99

6 What is a mathematical model? 100
6.1 The extension to knowledge representation, part II 101
6.2 Interaction and intervention . 108
6.3 Invariant methods . 110

6.3.1 The role of simulation . 112
6.4 How to begin . 116

A Sheaf theory for distributed systems 117

B A very brief review of probabilistic programming 118
B.1 Learning in probabilistic programming 119

C A very brief review of homotopy type theory 119
C.1 Very brief review of type theory 120
C.2 Propositions as (some) types . 121
C.3 Univalent foundations . 121

D Topological data analysis 123
D.1 Persistent homology . 123
D.2 Persistent cohomology . 125
D.3 Mapper . 125
D.4 Quantitative homotopy . 128

2

E TQFT 129
E.1 Very brief review of TQFT . 129
E.2 A few questions . 130
E.3 Very brief review of neural networks 131

F Localization 132
F.1 Analogs of localization . 133

G Motives 134
G.1 The emergence of sheaf theory 135
G.2 The search for a universal cohomology theory 135
G.3 A very brief review of SGA . 137
G.4 Universality . 137
G.5 The standard conjectures . 138

H Very brief review of QBism 139

I Miscellaneous 141
I.1 Homomorphic learning . 141
I.2 Geometric complexity theory . 141
I.3 Asynchoronous computation . 142

3

“For an answer which cannot be expressed, the question too cannot
be expressed. The riddle does not exist. If a question can be put at
all, then it can also be answered.” – Wittgenstein

1 Introduction

The reason for putting artificial intelligence (AI) and geometry together in the
first place is due to an intuition I had very early on in 2011 as a student in
robotics: what AI needed was a systematic way of putting together logic (in the
form of algorithms, proofs, and engineering design) with real-world data, and
that the statistical algorithms popular in machine learning comprised only one
class of options. Geometry, I hoped, could be another—after all, somehow there
was a “logic” embedded in the geometry of space-time called the physical laws.
More than the hope for new algorithms, however, I wanted to construct the same
sort of mathematical semantics for AI as there exists for the theory of compu-
tation. I believed that the field of geometry could give an organizing principle
for AI. By organizing principle I mean not just a classification of objects but
some means of comparing and combining tools and methods in the discipline.
Concretely, I wanted not just a classification of di↵erent mathematical models
in AI (from ontologies to dynamical systems to Bayesian networks to simple,
Boolean functions) but some means of comparing and combining “learning algo-
rithms” meant to construct those models from data. The intuition for applying
geometry is supported in part by the success of category theory in combining
and composing tools and methods from many di↵erent areas of math, and in
part by formal similarities between algebraic geometry and model theory (and
now between homotopy theory and type theory) which illustrate how problems
posed in logic and computer science could be transposed to cleaner frameworks
of geometry, number theory, and category theory. Existing applications also
show that such connections can be fruitful, from information geometry to per-
sistent homology to geometric complexity to the use of topoi in categorial logic.
In any case, AI is a jigsaw puzzle, and I need a way of organizing the pieces.
Geometry seems like a good bet.

For this to work, first o↵ I need to find some non-trivial “isomorphic” struc-
tures in AI and in geometry. Given such structures, it should be possible to
apply organizing principles in geometry to AI. This hope is the subject of this
brief essay. So far there isn’t much understanding, but rather a list of things I
would like to understand in the future.

1.1 How to read this essay

Sections 1-4 form the core narrative, reviewing developments across AI, algebraic
topology, and algebraic geometry. Section 5 contains a few concrete proposals
for future work. The lettered sections in the appendix discuss some particu-
lar research topics related to geometric intelligence and should be regarded as
pointers to further reading.

4

1.2 Acknowledgements

I’ve had many interesting discussions in the course of this research. In particular,
I would like to thank Samson Abramsky, Bob Coecke, David Spivak, Misha
Gromov, Yiannis Vassolopoulos, Mehryar Mohri, Sylvain Cappell, and Brian
Scassellati for help in developing some of these ideas.

This essay is based on a similar document [52] by Andreas Holmstrom on
cohomology theories in arithmetic geometry.

1.3 Examples of connections between AI and geometry

To motivate the problem, we list some examples (in no particular order): in-
variant methods in computer vision, motion tracking and planning, configu-
ration spaces in kinematics, foldable robots and surfaces, grid cell geometry
in the hippocampus, di↵erential geometry of neuronal networks, mobile sensor
networks, topological measures of complexity, geometric optimization, Herlihy
and Shavit’s application of topology to asynchronous computation, informa-
tion geometry, topoi in categorial logic, vector logic, homotopy type theory and
1-groupoid structure of types, topological data analysis, persistent homology,
quantitative homotopy theory, disconnectivity graphs, Morse theory in neural
networks, Conley index theory in noise detection, manifold learning (dimen-
sionality reduction) techniques like projection pursuit and Isomap, hierarchical
clustering and any number of clustering algorithms on a metric space, topolog-
ical clustering methods like Mapper, “partial clustering”, functorial clustering,
kernel PCA, one-inclusion graphs for concept classes, cubical complexes and hy-
perplane arrangements in sample compression, restricted Boltzmann machines
and the renormalization group, herding and discrepancy theory, a variety of
optimization scenarios like gradient descent or convex minimization, SVM, any
variety of kernel methods, graphical models, k-nearest-neighbor search, random
matrices in computational neuroscience, o-minimal theory and real algebraic
geometry, sheaf theory for contextuality [1]. Given the interconnected nature
of geometry and algebra, I also include some applications of abstract algebra to
AI: Izbicki’s algebraic learning models or “homomorphic learning”, computable
algebra and the theory of computable numberings, algebraic statistics.

Additional examples from category theory, mostly hypothetical: Lawvere’s
category of probabilistic mappings, category theory for systems engineering (e.g.
a forthcoming category of design problems [108], the resource categories being
developed at NIST [15], a hypothetical category for change propagation), cat-
egory theory for reactive architectures in robotics including the hypothetical
category of subsumption diagrams and the hypothetical category of “tuned” os-
cillators [58], McCullagh’s category of design objects and statistical models [76],
category theory for dynamical systems (e.g. Baez’s work on chemical reaction
networks, Spivak’s work on dynamical systems and sheaves, Spivak’s operad of
wiring diagrams, the algebra of open dynamical systems [113], Fong’s PROP of
linear time-invariant dynamical systems), string diagrams in topological quan-
tum field theory.

5

Broadly speaking, the above examples fall into three categories: applications
of geometry to naturally spatial problems in AI, geometric studies of logic and
computation, techniques of data analysis and learning defined on metric spaces,
and categorical representations of all the above.

Suggestions for more examples would be greatly appreciated.
As of yet, there is no big Curry-Howard style correspondence between the

two subjects. Homotopy type theory is probably the closest (types are 1-
groupoids where the given identity types are the path spaces), and there is
something very interesting about Voevodsky’s proposed univalence axiom as an
“abstraction principle”.1 In a similar vein, Baez has described a (not quite
formal) analogy between programs and cobordisms in the context of compact
symmetric monoidal categories.

1.4 Examples of questions related to AI

The subject of “geometric intelligence” doesn’t exist yet, much less does it
have established questions and conjectures. In lieu of these we mention some
broad problems in AI, with a bias toward ones with geometric and categorical
applications.

1. The big one: statistical predicate invention / hidden variable discovery
[29]. How do people do it? This is the technical formulation of what we
call “the problem of learning structure”, or concept formation, or, even
more plainly, how to explain things.

2. Synthesizing knowledge, including learned knowledge, from multiple do-
mains.

3. Many other more technical questions in machine learning. Discrepancy
theory and the Gaussian correlation conjecture [18]. The sample com-
pression conjecture.

4. Deep questions about models of computation. These include questions
posed by Penrose and Smale (what are the limits of intelligence? Is artifi-
cial intelligence even possible?) which retract to questions about what we
mean by “algorithm” or “computational process”.

5. Questions posed by computational complexity theory. While directly re-
lated to AI vis-á-vis search and machine learning, it is also the quantita-
tive reflection of “qualitative” questions about computability and models
of computation.

6. Questions (really, entire fields of study) about how to implement human-
like faculties in artificial agents. Computer vision, optical character recog-
nition, natural language understanding, voice recognition, robot kinemat-
ics, motion and manipulation.

1By abstraction principle I mean something very concrete: if a description of a construct
(e.g. a programming method) shows up in multiple places, you should be able to abstract it
so that the description only shows up in one place. Also, see Section ??.

6

Of course geometry and topology have their own problems and conjectures,
and we will review a few in Sections 4 and G.5. To study “organizing principles”
in any field requires understanding the relationship between a field’s problems
and the data of its examples.

1.5 A question

Question 1. Can we use cohomology to formalize assumptions about “structure
in data” and thus about learning?

1.6 Reasons for studying cohomology as an AI researcher

Modern geometry is inextricably bound with this mysterious notion called co-
homology. Mysterious because of its abstraction and because how there are so
many cohomology theories in geometry and in topology, each useful in di↵er-
ent ways. This is surely an overstatement, but it seems that for every subject
or class of spaces there is a cohomology theory: simplicial homology for tri-
angulated spaces, de Rham for smooth manifolds, étale for schemes, Floer for
symplectic, (topological) K-theory for fibrations, sheaves for abstract varieties,
l-adic for number theory, group cohomology, Hochschild for algebras, persistent
homology for finite metric spaces, nonabelian for higher categories, and so on.

As an AI researcher, trying to understand cohomology theories in general
seems like a useful thing to do for the following reasons:

1. Persistent homology is an active, important research program that explic-
itly uses homology in clustering and classification.

2. Topology and geometry, in various guises, have been used in machine learn-
ing since the inception of the later discipline, but rarely “qualitatively”,
e.g. using tools like homotopy and homology.

3. Sheaf (co)homology has met with some success in robotics [?] and in quan-
tum computation [2].

4. Because cohomology is deeply connected to other areas of geometry and
topology, a good understanding of cohomology theories in general should
lead to an understanding of—or at least a new perspective on—other
organizing principles in geometry.

5. Intuitively, learning is about extracting structure from data, and homolog-
ical functors are ways of extracting the algebraic structure from a space.
Whether or not this is a productive analogy we will see.

6. Even without making any progress on the hypothesis, writing all this down
should help future students apply a wide range of geometric techniques
to AI and learning. There is no textbook doing this currently, as far as
I’m aware, though there are a number of related books from di↵erential
geometry and information geometry, e.g. Watanabe [118].

7

“Typically, AI “succeeds” by defining the parts of the problem that
are unsolved as not AI. The principal mechanism for this partitioning
is abstraction. Its application is usually considered part of good
science, not, as it is in fact used in AI, as a mechanism for self-
delusion. In AI, abstraction is usually used to factor out all aspects
of perception and motor skills. I argue below that these are the hard
problems solved by intelligent systems, and further that the shape of
solutions to these problems constrains greatly the correct solutions
of the small pieces of intelligence which remain.” - Brooks

2 Very brief review of AI

AI is a 60-year-old research program defined by four main approaches: symbolic
methods, statistical inference, connectionism, and situated cognition. Broadly,
the common goal is to design and engineer robots and virtual agents that can
perform in a wide range of dynamic, persistent environments. To be clear,
each approach constitutes a broad class of specific, computational methods for
specifying behavior. I will not attempt a formal definition of “method”; the
point is that the particular methods exist, can be implemented and recorded,
and thus constitute a form of data about behaviors in the world.

Despite the title, this section is not quite a review. Our goal is to set
the stage for a structural description of AI methods including but limited to
the four approaches listed above, so that we can begin to think consistently
and mathematically about their di↵erences. We want to pass easily from one
method to another by means of some overarching structure, carrying insights
and structures from one setting to another without e↵ort, “for free”.

2.1 Approach: symbolic methods

Early progress in AI (from the 50s to 60s) focused on artificial agents directly
capable of “reasoning”, where the model for reasoning was mathematical logic.
This bears itself out in three respects: as Moore [81] points out, not only was
logic used to analyze the consistency properties of other reasoning systems, but
it stood out as a model for such reasoning systems (e.g. Newell and Simon’s
Logic Theorist) as well as a programming language in which to implement such
reasoning systems (e.g. LISP). Examples of this approach included knowledge
databases like Cyc, robots like Shakey and Julia, and expert systems like Mycin
and Dendral.

The underlying strategy of symbolic AI or logicist AI—as first set in [73]—is
to extend logical methods to commonsense reasoning.2 In essence, the idea is
to compute directly on knowledge, for which purpose knowledge must first be
abstracted into propositions. A specific system for abstracting knowledge into
propositions was called a knowledge representation (KR); a variety of logics

2Compare this to its intellectual precursor: “the dominant goal, then, of philosophical logic
is the extension of logical methods to nonmathematical reasoning domains.” [111]

8

were then developed (often hand-in-hand with new KRs) to compute on sets
of propositions: Robinson’s resolution method, nonmonotonic logic and cir-
cumscription, default logic, description logics, modal logic and epistemic logic,
inductive logic programming, tense/temporal logics, and a variety of calculi for
reasoning about action. Most of these logics are ways of axiomatizing structural
knowledge about the world—rules about time, place, causation, etc.—into the
implication procedure so that deductions can be made computationally feasible.

Unfortunately, the first step of the symbolic strategy—making commonsense
knowledge explicit—proved far harder than anticipated. Further, implementa-
tion of the strategy has been largely piecemeal; researchers tend to construct
separate axiom systems that work on di↵erent toy problems without attention
to how these axiom systems might interact on even a medium-sized problem [21]
(much less on a real-world problem like motion planning). Worse, combinatorial
explosion is still a huge problem, as it is in the larger field of automated theorem
proving.

Question 2. Is there a paper somewhere that examines the interactions be-
tween (relatively large) axiom systems? This isn’t quite the same thing as on-
tology integration, on which I have seen some papers [86, 102], though I imagine
the two are related.

[TO ADD? J. McCarthy’s description of circumscription, in relation to “in”
and “out” in causal models.]

[TO ADD? Description logics and their use in data integration / validation.
In answer to the question, where has KR been really successful?—well, in the
design of databases and programming languages.]

2.2 The extension to knowledge representation, part I

While symbolic methods have fallen out of favor today, the field of knowledge
representation is the right extension of historical work in symbolic methods, even
though KR is in many ways a far wider and more broadly applicable field of
study. Just as a symbolic method is a way of axiomatizing structural knowledge
about the world into the implication procedure, knowledge representations are
ways of imbedding structural knowledge about a given context into a possibly
sub-symbolic method—or rather, from the perspective of this paper, the repre-
sentations are ways of illustrating the structural assumptions already present in
the method. Davis et. al. [22] describes five roles of KR, of which we cite two:

1. A knowledge representation is a coarse theory of intelligent reasoning ex-
pressed in terms of “(1) the representation’s fundamental conception of
intelligent reasoning, (2) the set of inferences that the representation sanc-
tions, and (3) the set of inferences that it recommends”.

2. A medium for pragmatically e�cient computation, in the sense that a
KR should organize information to facilitate making the recommended
inferences.

9

Thus KR is concerned with the formalisms for representing knowledge3,
whether these be collections of propositions in a Frame language, semantic nets
for words in a natural language, clusters in a vector space, concept classes
C ⇢ {0, 1}X in machine learning, or a simple table in a relational database
(e.g. truth tables, lexicons, web ontologies, etc.). It is our belief, though we can
o↵er no formal proof, that KR has applications to every approach in AI, not
just the symbolic, since one must go with some form of KR in any practical AI
application, even if the particular representation is implicit (as in an embod-
ied robot) or opaque (as in the internal representations of a neural network).
Wherever there is a consistent response to a challenge in the world, there is KR;
this is the reasoning behind our very first claim: that AI needs “a systematic
way of putting together logic with real-world data, and that statistical methods
comprise only one class of options.”

We reject the first two roles of KR described by [22]:

1. “A knowledge representation is most fundamentally a surrogate, a substi-
tute for the thing itself, used to enable an entity to determine consequences
by thinking rather than acting, i.e., by reasoning about the world rather
than taking action in it.”

2. “It is a set of ontological commitments, i.e., an answer to the question: In
what terms should I think about the world?”

These roles reprise KR’s traditional emphasis on abstraction and ontology. But
we believe that representation is involved in acting as much as it is involved in
“thinking”, and that one can have KRs where the set of ontological commitments
is unclear or inaccessible, or where even the notion of ontological commitment is
hard to define. Defining KR by these roles tends to obstruct a more structural
understanding of KR. [Because...?]

KR, considered as a sub-field of computer science, is a strict subset of the
symbolic approach; after all, representing knowledge in a computer requires,
a priori, that the representation be formal, symbolic, and thus amenable to
symbolic methods—everything reduces to a collection of propositions in some
logic at some level. However, the choice of how to represent a (computational)
problem matters in ways that are not obviously logical: it changes the com-
putational complexity of the problem; it changes the available structure (think
shortcuts) for resolving the problem; it changes our language for expressing the
problem; it changes our intuition of how to solve the problem; it is, more often
than not, useful. Much as the choice of number system can extend or constrain
the possible solutions to a set of equations, with sometimes surprising and of-
ten informative outcomes, di↵erent KRs of the same environment can suggest
radically, surprisingly di↵erent behaviors. [Find a good citation.] For example,

3“Knowledge” is a vague word. Perhaps it is objective and propositional; perhaps it is
dispositional, situational, and embodied [30]; perhaps it is linguistic in some fashion that
is neither strictly propositional nor dispositional but combinatorial and compositional [20].
These discussions are prior, speculative, “logical” in the sense of Question 3. [Justify this
claim, expand into separate section?]

10

the choice to interpret a Bayesian network as a network of causal relations, as
opposed to merely a list of conditional probabilities, forms the basis for practi-
cal and significant algebraic constructions (the do-calculus, [89]), even though a
Bayesian network is, technically, just a list of conditional probabilities. Choos-
ing or constructing the right representation is a di�cult problem for any given
context, one that resists easy formalization. It is the problem we hope to solve.

For a more classical discussion of KR, consider the papers by Newell [84]
and Davis et. al. [22].

Question 3. How should we study and formalize the concept of a knowledge
representation? This is the major question of this essay.

[Add more discussion of why this is hard, and a literature review (4 para-
graphs?) of more modern approaches to defining KR.] Building on ideas com-
ing from computational learning theory, Dreyfus [30], and the “Logical Conse-
quence” seminar of Gri�ths and Paseau [47], we give the following definition of
KR:

Definition 2.1. A knowledge representation, or just representation, is a corre-
spondence from a domain, not necessarily logical or formal, to a formal logic.

What is a domain, and what is a correspondence? Intuitively, when I say
domain, I think of a domain of data, and when I say correspondence, I think of
a correspondence in the sense of a set of constraints that bound the behavior
of “learning algorithms” whose output (from mere propositions to more compli-
cated mathematical constructions) can be analyzed via the formal logic. There
are other possible definitions, fit for di↵erent questions. The definition above is
su�ciently broad to cover all examples of interest in this essay, from the mod-
eling of “non-logical constants” of Question 4 below to the typical dynamical
system models of robotics all the way to the concept classes of Question 21. It
grounds our later discussion in Section 6.

Question 4. In philosophy and especially analytic philosophy, one common
domain is natural language. Another common domain is “common sense”. If
a KR is defined as a correspondence from some domain in which knowledge is
possible to some formal logic, then we can analyze the success of a KR in several
di↵erent ways. From one perspective, a KR is successful insofar as the logical
notion of consequence captures the notion of consequence within the original
domain. But what is logical consequence, as opposed to “natural” consequence
in the original domain? For example, many philosophers [?, 47] hold that logical
consequence is defined by its invariance over all non-logical constants.

[Why not put the “term paper” for Logical Consequence here?]
Naively, one could interpret a KR as a mapping

Domain
R // Logic

11

s1
� //

)

✏✏

p1

`

✏✏
s2

� // p2

[What about generalizing the correspondence from domain to formal logic,
so that “logic” is not some abstraction but is “experienced” inside a computer?
Or logic may live in the physical world as physical laws. This should be a key
part of how to think about simulations.]

When the domain itself is formal, it makes sense that the representation can
also be specified formally and exactly. But what if the domain is not formal?
At least the representation should be “consistent” in some sense; that is, it
should be at least possible to find evidence related to the domain—data—for
whether the behaviors predicted by the formal logic correspond to the domain,
even if there is no global, formal rule that guarantees that all the data (or
any of it) makes sense. So even if we cannot reason formally about KRs when
the domain is not logical, we can still think behaviorally : that is, interpret
each KR as a more-or-less formal way of delimiting or inferring a “space of
possible behaviors” in a domain, and the domain itself can be thought of as the
full space of possible behaviors (this may not always be reasonable). Each such
domain is endowed with various structures and descriptions: e.g. a mathematics
classroom, a manifold in R4, a fragment of the English language, a “concept
space” of right and wrong hypotheses, and so on.

Though we should question what makes it possible to think behaviorally.
Again, the domain may or may not be formal, while “logic” is, by assumption,
formal. Recall Moore’s point: formal logic is both a method for studying infor-
mal domains and a domain itself amenable to study. By analyzing the space of
possible behaviors and inferences, we can think of each representation as a way
of passing from a consistent, perhaps formal system of study to more fundamen-
tal stories about structure. To say that it is possible to study a representation
behaviorally is to say that each representation is not only as a correspondence
between a domain and a logic but an example of a correspondence from logic
to geometry. [Geometry has to do with data integration, though I’m not sure
a representations go all the way to data—maybe we should call such a thing,
something just prior to a true geometry, a “geometry up to simulation”.]

Perhaps we can borrow some ideas from the foundations. From Rodin’s
remarks [?], work in topos theory has shown that the semantics/practice of a
rich structural theory (e.g. Euclidean geometry) cannot be controlled by its
axiomatization (such as in the Elements or in ZFC) but requires additional
notions of basic elements like points and lines and the rules for putting them
together. (Surely this was obvious before, but our intuition for what was missing
from the axioms was formalized through the (1-)topos structure.) Further,
these rules and the knowledge of how to use them cannot be reduced to mere
propositions; the di↵erence between constructing the line through two points

12

(as happens in a proof) and the postulate “there exists a line through every
two points” is not trivial. This feature was once observed by Hilbert in the
distinction between “genetic” mathematics (by which Dedekind constructed R
from a primitive N) and his own formal program. [?] suggests that this “how”
knowledge may be encoded in a dependent type theory, or in a homotopy-
theoretic setting via homotopy type theory. If so, then could each KR be a sort
of abstraction principle for (comparing and combining) types? See Section 6.

Question 5. How do advances in logic relate to advances in KRs connected to
that logic? For example, how can theorems about propositional logic be lifted
to theorems about all possible representations that outputs into propositional
logic? How can theorems about dynamical systems be lifted to theorems about
all possible representations that output into a dynamical system? [Discuss in
Section ?? on a copresheaf representation? This question puts me in mind of
another question, about the relationship between inductive inference and its
“polynomial-obsessed” cousin, computational learning theory.]

Question 6. Spivak [102] describes “ologs” as a categorical knowledge repre-
sentation. An olog is, roughly, a way of replacing a relational database with
a category, with advantages accrued from comparing and combining databases
(think ontology integration / ontology matching). In what ways can this address
some of the known historical issues with the KR-as-ontology approach, and in
what ways does it fall short?

2.3 Approach: statistical inference

Inductive inference is the process of hypothesizing general rules from particular
examples; the essential di↵erence from deduction is that ‘correct’ induction may
nonetheless give rise to false conclusions: there is a fundamental uncertainty in
induction.4 Statistical inference is inductive inference on examples drawn from
a probability distribution, where the distribution quantifies the uncertainty. Ex-
amples of this approach include neural networks, hidden Markov models, logistic
regression, and any number of other machine learning algorithms (though it does
not include inductive learners like FOIL, where inference is over propositions).5

Think about what it means to “draw from a distribution”. I hesitate to call
it a strategy, but there is a common assumption in every statistical algorithm
which is built into the very idea of sampling from a distribution: all examples are
equated under a statistical model. In practice, every statistical model requires
(though does not fully specify) a process for regularizing its examples, which
often comes down to killing any relations that might exist between the examples.

4Gold’s seminal paper [43] introduced the standard recursion-theoretic formalism for learn-
ing: given a sequence of examples (f(0), f(1), ..., f(n)) of a computable function f , is there a
learner that can produce f? [Take out Wikipedia’s definition and put in Angluin’s.]

5Statistical inference is indelibly associated with the word learning, though it’s useful to
point out that not all learning involves inference, much less statistical inference. For example,
a machine learner can learn a new rule by being told the rule by either a programmer or another
machine. Alternately, it can learn the rule by applying a known analogy with another, known
rule. [25]

13

(We might think of this regularization process as type-checking the data, or as
truncating the higher path structure in the sample space.) The output of this
process is what we call “data”, whether in the form of vectors, lists, or bitstrings.
I think of regularization as an intrinsic part of working with data, and of the
experimental process more generally.

We can look at this in two ways. (1) Take the regularization process as evi-
dence that each statistical model, at its assembly level, commits to a single rep-
resentation of the world.6 (2) Alternately, take the statistical model as evidence
for various properties of the representation. More baldly: take the statistical
model as a set of constraints on “good” representations of the data. These per-
spectives are important when considering how to vary our representations over
di↵erent models, or how to vary our models over di↵erent representations—over
di↵erent sorts of data.

Some examples. Sometimes regularization is obvious; after all, a class label is
a kind of relation, and the entire point of classification is to recover these labels.
In other cases this process is not so obvious, as when scientists preprocess data
in order to remove (structured) noise incident to the measurement apparatus.
For example, in quantum mechanics one has the idea of “preparing a state”.
The state represents a system for which we do not know (or care) about where
it came from (i.e. how it was produced); just that we we have the output of that
system and that it is in a particular state. We do not care about the previous
history of the state.

I think of “preparing a state” as a generalization of the process of regularizing
a statistical unit, since any number of physical and mathematical procedures
(mirrors, lasers, beam splitters) may be involved in preparing a quantum state,
while we are focusing on a small subset of mathematical procedures in the case
of statistical regularization. All the relevant structure in a statistical unit is
taken to be internal : for example, a vector is represented completely by its
ordered list of components. In this view, such statistical models are the tools
by which we equate data and ‘prep’ it for induction; perhaps another way of
stating this is that data, unlike the variables provided in a logical domain, are
always “quantified”—in the sense of existential or universal quantification—by
the representation which introduced them.7

[Also: discuss the possibility and requirements for a set of E-M axioms for
statistics and causation. Cf. McLarty’s paper for inspiration?]

As one might expect, simplifying data by killing relations allows one to apply
a uniform inference procedure that works well on large data sets. Practically,
this has worked well since technology tends to produce such large, simplified
data sets. Several challenges arise though:

1. The curse of dimensionality. Whether in classification or in clustering,
high-dimensional data can vastly increase (depending on the choice of

6One can always extend the representation to enable higher relations (though not easily),
but one cannot get away from committing to a representation.

7Perhaps another way of stating this: the model understands what a vector (or table, or
graph) is and is capable of “killing” (or unwrapping?) the external vector structure in order
to compare and di↵erentiate the data inside.

14

learning algorithm) the number of examples required to demonstrate a
significant result.

2. Collecting, cleaning, and integrating data is expensive and dismayingly ad
hoc. While we no longer have to hand-code behavior, the flip side is that
we are now doubly dependent on having good data, especially labelled
data.

3. The design and choice of reward functions (or loss functions) can be very
di�cult and can obscure the contribution of the programmer versus the
actual “intelligence” of the learner.

4. It’s hard to learn structure. Statistical learning tends to be “shallow”:
we can learn basic concepts (the di↵erence between plants and animals)
but find it harder to learn the kind of complicated relationships between
concepts which are typical in logic and higher reasoning.

Question 7. How do symbolic and statistical approaches di↵er on their ap-
proach to recursion?

Consider: a general strategy in machine learning involves online learning,
where one forms a hypothesis then updates that hypothesis by testing it on single
points of data (or possibly small batches). There is an incremental, recursive
nature to such online methods, and the recursion is particularly simple: just
update the hypothesis. Would this recursive property fail if we tried to apply
online methods on data endowed with higher structure, for example grammatical
structure? I.e., what would happen if our algorithm ate not a vector of words,
but sentences with an implicit notion of word location and colocation? (One
imagines not just a vector of words but a “chain” of words, in the sense of a
chain complex, or an open set via a sheaf.) Certainly the problem is harder,
but in what way is it harder; can we quantify that relationship? If statistical
quantification (“truncation”?) is thought of as an operation on individual points
of data, how could it interact with the recursive operation “update model on
data”? [How could I state this question be better stated? Answer: better
examples.]

I guess we could always “preprocess” the more complicated data so that we
can feed it in a form accepted by a typical statistical algorithm, but for the
results to be useful, this preprocessing step requires a careful understanding of
the data and where it comes from.

But does the question “where does the input come from” matter in tradi-
tional recursion theory?

What is a statistical model?

To do statistical inference at all we must use a statistical model to connect
probability distributions to samples; these distributions formalize further as-
sumptions about our random variables X and “where they come from”. The
sum of all these connections can have a surprisingly complicated logic. We

15

briefly review the categorical formalism suggested by McCullagh [76]. The es-
sential idea is that the meaning of a model should be preserved (via a functor)
under all the usual changes (morphisms) in the sample, the covariate space, or
the labels: “the sense of a model and the meaning of a parameter, whatever
they may be, must not be a↵ected by accidental or capricious choices such as
sample size or experimental design.”

Definition 2.2. Let U denote a set of statistical units (e.g. trials in an exper-
iment). Let V denote a response scale (i.e. a set of labels). Let ⌦ denote a
covariate space (i.e. a feature space). Then a statistical model or model object
is a map

P : ⇥! P(S)

from a parameter set ⇥ (defined for some covariate space ⌦) to the set of all
probability distributions on the sample space S := V

U .

Now the idea is to associate to each design object : U ! ⌦ a statistical
model P : ⇥⌦ ! P(S) in a way that respects all the ‘usual’ changes in U , ⌦, V,
and the parameter set ⇥⌦. We do this by defining P : ⇥ ! P(S) as a natural
transformation of functors. The point of this is to impose a consistency condition
on computing probabilities [a coherence condition up to (higher) homotopy?],
so that “di↵erent ways of computing the probability of equivalent events give
the same answer” [76, pg. 1241].

Question 8. Often we do well enough without describing statistical models
explicitly (witness algorithms like SVM or AdaBoost that never even mention
probability), and in most scientific applications a good statistician hardly needs
to refer to the abstract nonsense just discussed. However, McCullagh’s formal-
ism could be useful for clarifying and analyzing certain tacit assumptions that
go into the inference procedure. Particularly, can we use it explore generaliza-
tions of the “design object” : U ! ⌦, i.e. designs that do not truncate the
“higher path structure” that may exist in U but lift them fiber-wise into ⌦?

2.4 Approach: connectionism

[To add: discuss Smolensky’s ICS, the role of hybrid architectures even in con-
nectionism, and its applications in NLP. Add discussion of how every matrix
W of composed connections + weights encodes a kind of implicit causal order
(do you interpret “clowns tell funny jokes” as clowns + jokes first, or tell, then
clown + jokes, then funny?). Do you first focus on the object or the subject?]

To add: from the perspective of graph theory / network science, ”topology”
is represented by the unweighted adjacency matrix, while ”geometry” is rep-
resented by the weighted adjacency matrix. It kind of makes you realize that
geometry in the sense of a metric is really assuming a lot, and also that any
kind of weighted network defines the contours of a certain geometric object.

Within the field of artificial intelligence, connectionism is the idea that in-
telligent behavior arises from the emergent properties of networks of simple
automata. For complicated reasons, connectionism today has retracted largely

16

to the domain of statistical inference.8 AI researchers do not claim that arti-
ficial neural networks can simulate human intelligence on any level except on
restricted, well-defined learning problems—though in such cases (classification,
natural language processing, etc.) we have lately seen outstanding results and
a resurgence of neural network methods under the moniker “deep learning”.
Today, connectionism in AI is synonymous with McClleland & Rumelhart’s
paralleled distributed processing (PDP) approach [75], which emphasizes the
massively parallel architecture of the brain along with the distributed repre-
sentations of concepts and relations, which are stored as weighted connections
between many simple neurons. See [74] for a more recent note.

There are two main problems with connectionism in AI: first there is the ob-
vious one of learning structure inherited from statistical inference. The second
problem, one common in AI, lies in the vast divide between a very plausible but
general proposal about human cognition and the engineering task of construct-
ing an artificial model at anywhere near the requisite scale and complexity which
exists in the human case.9 Nor is there any obvious research path today that
will take us through the no-man’s-land between the general proposal and our
toy models of neural networks. Illustrating the problem, von Neumann writes
(in a 1946 letter to Norbert Weiner):

“What seems worth emphasizing to me is, however, that after the
great positive contribution of Turing-cum-Pitts-and-McCulloch is
assimilated, the situation is rather worse than before. Indeed, these
authors have demonstrated in absolute and hopeless generality that
anything and everything Brouwerian [i.e. constructible, “computable”]
can be done by an appropriate mechanism, and specifically by a
neural mechanism—and that even one, definite mechanism can be
‘universal’. Inverting the argument: Nothing that we may know or
learn about the functioning of the organism can give, without ‘mi-
croscopic,’ cytological work, any clues regarding the further details
of the neural mechanism... I think you will feel with me the type of
frustration that I am trying to express.”

In neuroscience

As a larger trend in cognitive science, connectionism has the most cachet in
hard neuroscience, where some variant of it is unspoken but nearly universally
assumed by the working neuroscientist. The search for a general theory of “brain
intelligence” splits along three approaches:

8Though it’s of some interest that McCulloch and Pitts, who first originated connection-
ism as a theory of intelligence, viewed neural networks as closer to logical methods, akin to
universal Turing machines, than as methods of statistical inference.

9The brain is complicated on both a local scale (consider specialized areas for process-
ing vision, language, spatial navigation, fine motor control) and a global scale (connections
between distant brain regions, the large-scale structure that undergirds the ability integrate
percepts, models, and behavior). In practice, artificial neural networks are usually simple on
both local and global scales.

17

1. the computational modeling of large scale brain dynamics, seeking pat-
terns of synaptic potentials over a large network (n � 6 · 109). “How do
networks of neurons give rise to complex behavior and learning? What
can statistical mechanics say about brain function?”

2. studies of particular regions of the brain associated with cognitive facul-
ties (e.g. vision, olfaction, and/or various pathologies arising from local
lesions). “How does the brain see? How does it navigate in space? How
does the brain form memories?”

3. cognitive neuroscience (along with cognitive science) blends biological the-
ories and biological data from MRIs and encephalograms with psychology-
style experiment design. “What does the brain look like when it feels pain?
How do activations for di↵erent stimuli compare?”

There are a variety of theoretical viewpoints that try to synthesize some of
the above data: Walter Freeman has a general theory that applies dynamical
systems theory to brain function. Ehresmann and Vanbremeersch [34] have a
model they call “memory evolutive systems” that uses category theory to model
neural behavior (there’s an interesting idea of describing colimits as models
of collective behavior). Llinás [66] describes a embodied cognition framework
where subjective “qualia” are the subjective correlates to the physical brain
mechanisms that bind together multiple sensory representations. From a more
philosophical perpsective, Tononi [?] has an interesting theory that measures
the consciousness of some artifact (e.g. a brain region) based on its capacity to
integrate information.

Excepting Tononi’s theory, these are all theories of human intelligence, and
while we can take inspiration from them, we should be guarded about how
applicable they are to designing a functioning artificial intelligence. Birds may
fly by flapping, but planes do not, and rockets even less.

2.5 Approach: situated cognition

In AI, situated cognition is often associated with robotics, though it has an-
tecedents in early (non-robotic) examples like ELIZA and SHRDLU that em-
phasized “scru↵y” programming solutions to real-world problems over “neat”
mathematical approaches involving either logic or statistics. The emphasis of
situated cognition was and still is on getting interesting behavior in a particular
situation (which may resist mathematical representation) rather than on obtain-
ing formal justification for a method; such situations arise dynamically through
the interaction between an environment and the body of the AI. See [30] for a
philosophical account of this view.10 In Brooks’ foundational paper [17], situ-
ated cognition comes across as an engineering philosophy: “to use the world as
its own model”. Practically, this means engineering simple systems in the real

10For some more discussions in philosophy of mind with applications to AI (esp. on “in-
tentionality”, the capacity of minds to form and give meaning to mental representations), see
Dennett [24], Fodor [37], and Putnam [91].

18

world (as opposed to complicated algorithms on cleaned data) and then incre-
mentally improving these systems in order to obtain more complicated behavior.
Examples include Grey Walter’s tortoise, Braitenberg’s “vehicles” [14], Brooks’
Genghis and the subsumption architecture [17], a series of self-driving cars from
CMU and from Google, and a variety of biologically-inspired approaches.11

One might expect that work on the particular, localized problems (particular
algorithms in learning, particular robots in particular environments) would be
orthogonal to understanding higher cognition. Situated cognition suggests that
two may not be as separate as we once thought. That is, higher cognitive abilities
like language learning and memory formation may not be separate, “universal”
processes but arise as elaborations and conditions on pre-existing a family of
behaviors, all of which were adapted to specific environmental contingencies.

The focus on engineering in situated cognition is critical. Brooks’ subsump-
tion architecture (see Figure 2.1) is an engineering architecture: a series of guide-
lines for combining and composing multiple simple, simultaneous behaviors in a
partial ordering of “layers”, with the condition that lower-layer behaviors have
precedence. So in principle it uses a low-level KR, but the KR was not what was
important to subsumption. The subsumption architecture managed to produce
impressive results in locomotion because (1) it was specifically engineered for
locomotion, which really comes down to the fact that (2) it was tightly integrated
with simple sensors and motors in the world.

Unfortunately, designing purely reactive “bodies” along with an appropriate
architecture (as in subsumption) is a time-intensive task, much like hand-coding
rules in an ontology.12 Hybrid architectures exist that marry high-level KRs with

11There is a much broader literature on situated cognition in philosophy, psychology, and
cognitive science which we can reference only in passing; the body’s role in cognition (compare
to the brain’s role in locomotion) has a rich intellectual history going back through Heideg-
ger to Kant to medieval theories of the four humours. For example, the thesis of embodied

cognition claims that higher cognitive abilities like abstraction and language are determined
by (or supervene on) lower-order behaviors such as sensing and moving. This thesis is often
paired with the thesis of embedded cognition: cognition depends on the natural (and social)
environment—the richness and ‘intelligence’ of human behavior cannot be explained solely by
the complexity of the brain but depends largely on the richness of the world in which that
person lives. Perhaps these claims are true—certainly human cognition tends to be very well
integrated with our sensorimotor skills (a baby raises its finger, points at an object in the
distance, and says “cat”). But true or not, we can build something interesting on the idea.

12In some ways this present essay is motivated directly in opposition to a quote from Brooks
[17]: “An extremist might say that we really do have representations but that they are just im-
plicit. With an appropriate mapping of the complete system and its state to another domain,
we could define a representation that these numbers and topological connections between
processes somehow encode.” In fact I am an extremist and I will call these representations
implicit. By representation here Brooks means a typical logical representation; he is right that
there is little point to constructing such a traditional, propositional semantics for his low-level
“program” of topological connections—one feels that this would actually be taking a step
back if our goal is a structural comparison of methods, since invariably the logical representa-
tion would be more complicated than diagrams such as Figure 2.1, we lose the computational
details of the circuit design, and in any case we lack good tools and theorems for analyzing,
much less combining, these sorts of axiom systems (cf. Question 2). But first, it may be inter-
esting to think about “appropriate” (i.e. functorial?) mappings to other, non-propositional
domains. And second, the answer is not to avoid thinking about representations, or to use

19

Figure 2.1: A relatively simple subsumption diagram, taken from [16].

statistical inference (e.g. on sensor data, or to calibrate certain defined behav-
iors) over a base of reactive behaviors tightly integrated with sensors and motors
in the real world. Examples and acronyms abound: SOAR, CAPS, Copycat,
PRS, ROS, etc. Alternately, consider physical examples like the Google Car,
the new Baxter robot, or even the lowly Roomba. Such architectures are among
the state-of-the-art in AI currently, and they emphasize the need for meta-level
control of many di↵erent sensor modules, reasoning modules, and many, many
reactive motor modules; one (vaguely connectionist) solution has been to orga-
nize these modules into layers that communicate via control rules. As one can
imagine, such architectures can become extraordinarily complex very quickly as
their components multiply, and their inability to learn new representations has
limited their application to problems like language learning.

Question 9. A hybrid engineering architecture is a syntax (sometimes a graph-
ical syntax) for combining and composing methods (thought of as arrows). We
can model this syntax through a variety of means, for example as wiring di-

only implicit representations—to hack. Hacking is necessary, but it depends on a foundation
of tools, languages, and structures that must be progressively expanded and reformulated for
di↵erent situations and environments—and this foundation is built from the bricks of knowl-
edge representation. [This may not be quite right; it feels like changing the KR is not just
about changing computational language or changing libraries, e.g. syntax, but also changing
the terms by which we evaluate performance.]

20

agrams [101]. But in what way can we model something like “tight integra-
tion with sensors and e↵ectors” in the category?—this is the abstract reflection
of questions about “learning through interaction” considered by Oudeyer [88],
Pfeifer [90], Wolpert [120], and many others. [This list really deserves its own
appendix.] This question points to disciplines like reinforcement learning, which
abstract this interaction between agent and environment (also called an action-
perception loop) using reward functions. (See [?] for a nice information-theoretic
extension to the reward function story.) It is also considered by Koditscheck
[?] as a question about of coupling di↵erent control problems together, where
tight integration with sensors and e↵ectors may be thought of as a story about
convergence (?) between the control problems. [It may make sense to talk
about Haskell and FRP here: the distinction between “pure” and side e↵ects,
but somehow to live in the real world we need to manage the side e↵ects.]

Recall that we are after a structural description of AI methods, so that
we can think consistently about their di↵erences. In my mind, a structural
description of AI methods ought to be the abstract analog to an engineering
architecture for AI, but to be useful this structural description, like the engi-
neering architecture, must vary with respect to di↵erent assumptions about the
nature of the world/task environment and the agent’s ability to interact with it
(cf. “body” in embodied cognition). With reference to Question 3, our defini-
tion of KR must either vary with respect to such assumptions or abstract from
them in a consistent but nontrivial way. (It is hard to describe what we mean
by nontrivial, though certainly we do not want to abstract completely from or
‘zero-out’ all external assumptions about the environment.) I hypothesize that
this requirement is the major obstacle to extending the KR of logical methods
to the KR of situated methods (and also, to some degree, the KR embedded in
a statistical model), and thus to a structural comparison of all methods.

Question 10. This question is generalizes the question of sensor integration:
suppose that, according to the hypothesis of embodied cognition, that people
embody their emotion and cognition in objects and processes outside of their
minds: in their physical bodies, in physical objects in the world, and even in
abstract things like norms, institutions, and language. When people o✏oad
cognition into something outside of themselves, what do those objects and pro-
cesses look like? Further, how should we talk about “trust” or “confidence” (as
opposed to trustworthiness) as a measure of the degree to which each object
or process is integrated into the persons own processes? This generalizes the
question of sensor integration since sensor sources are just one class of embodied
object or process.

This question originally arose in the context of urban studies: “how do we
better integrate sensor data into the decision-making processes of communities
and governments?”

My hypothesis: we can use the idea of embodied cognition to rigorously
analyze the compositional properties of those emotional states and cognitive
processes. I develop this further in this scratchpad.

21

https://docs.google.com/document/d/1A_lbNEJkYZ8eZPn2YpaHKIGw8VRqS-dZWYlZiRgfVYM/edit

From Brendan’s talk. Factorization hides internal structure. [Can I connect
this to both the weak factorization systems in homotopy, as well as with the
definition of “internal structure” aka structure in data?] E.g. Epi-mono factor-
ization systems as in FinSet. A “corelation” is a equivalence class of cospans
“stable under pushout”, which uses the factorization system in that category.
I.e a corelation discards the internal structure of a cospan... it models black-box
composition. Another way of thinking about this: cospans accumulate structure
i.e. representations of the empty equivalence class; corelations forget this.

Related to factorization; a category that has corelations “as a pushout” / a
factorization system should also satisfy the pullback-pushout property. f-¿¡-g =
p¡–¿q if pq is a pullback of fg; alternately f¡–¿g = p-¿¡-q if pg is a pushout of fg.

[applicable to neural algebra? Controllability is defined in terms of being
able to change trajectories. We can start on one trajectory and end on an-
other trajectory. But there are certain signal-flow diagrams where “there is no
trajectory that takes us from one traj to another”. Theorem: an LTI system
is controllable i↵ it has a span representation. This allows us to analyze the
controllability of the larger system by analyzing local properties.]

“Complexes good, (co)homology bad.” - Richard P. Thomas

3 Very brief review of algebraic topology

Recall our initial hypothesis: cohomology theories can be used to formalize
“assumptions about structure in data”. So, morally, each cohomology theory
embodies an approach to structure. (Yes, we su↵er from some pretty loose
morals in this paper.) One-half of this discussion depends on a looser, more
general definition of “data”, which we defer to Section 6. The other half can be
understood as the answer to the following question:

Question 11. Why analyze spaces at the level of cohomology at all as opposed
to, for example, at the level of chain complexes? Why analyze spaces at the level
of cohomology as opposed to at the level of zero-sets of polynomials? What, in
principle, is di↵erent or impossible without turning to cohomology?

On the surface, the answer is that cohomology is at least somewhat com-
putable, and thus its use is almost necessary in topological applications where
we want answers rather than more theories. Of course this answer is pragmatic
[wc: a posteriori?], and tells us nothing about why cohomology was invented
in the first place or why we might expect it to be useful before knowing any
applications. The full answer is implicit in the theory of derived categories and
their descendants, where we take our “invariant” as the full (co)chain complex
itself rather than its (co)homology. [The primitive idea is that the computation
of the (co)homology was already inherent in the definition of the chains.]

In general, any answer to why cohomology matters will depend on the
system—the “organizing principle”, a yoga based on experience with actual

22

proofs—we use to organize our invariants.13

We assume the reader is familiar with algebraic topology up to the level of,
for example, Hatcher [50]. The goal of this section is to paint a picture of the
development of cohomology in topology and to review and motivate the defi-
nition of the (homotopy) category of spectra, on the way to an abstraction of
cohomology suitable for AI. There will be some major diversions into homolog-
ical algebra. Most of the material and definitions presented here are taken from
Hatcher [50], Lurie [69], notes from the 2002 motivic homotopy summer school
[32], and, of course, the nLab. Since this section is to some degree historical, I
have borrowed liberally from the surveys of May [71] and Weibel [119].

As usual, all maps are continuous unless stated otherwise.

Question 12. Can we characterize what we really mean when we say that
(co)homology is computable? Perhaps a good starting point is the question,
what is a spectral sequence, really? At least in the Serre case, the idea is that
certain kinds of cohomology have this nice recursive structure where we can
take the “cohomology of the cohomology”, so that the cohomology on one page
reduces (word choice?) to the cohomology of the next. Furthermore, this re-
cursive structure makes the cohomology computable (in the sense of tractable
or solvable, not necessarily formally computable), and is in fact probably one of
the best formal explanations for why we think of cohomology as “easier” than
homotopy. It is, further, curious that spectral sequences have a much more
direct algorithmic, “machine-like” definition than most objects in topology. In
some sense, they are assembly-level representations of the process “required” by
a cohomology theory. Of course the recursive structure is natural since it all
comes down to ways of talking about filtrations of spaces or other, more explic-
itly “derived” objects (the nLab, for example, talks about spectral sequences
as obtained by filtering a stable homotopy type then applying a homological
functor—somewhat crazily, it even makes sense to talk about the “abelian cat-
egory of bigraded spectral sequences”). But still—are there other explanations
for this recursive structure, are there deeper ways of thinking about it and
thinking about spectral sequences? I’d guess that this will take some work re-
ally understanding the definition and structure of the di↵erentials. The reason
I ask this question is because many observations in stable homotopy seem to
be encoded in (and read o↵ of) various spectral sequences—fibrations to the
Serre SS, higher cohomology operations to the Adams SS, cohomotopy and K-
theory to the Atiyah-Hirzebruch SS, etc.—and it’s not unreasonable to think
that thinking about spectral sequences in a di↵erent way could help abstract
and simplify a large number of other results in topology.

13One might ask, why is all that “cool Grothendieck stu↵” so much more glamorous than
solving polynomial equations? In a di↵erent direction, one might ask, why are linear approx-
imations so useful?

23

3.1 Axiomatics

An ordinary (co)homology theory is a family of functors that satisfy some version
of the Eilenberg-Steenrod axioms: functoriality, long exact sequences, homotopy
invariance, excision / Mayer-Vietoris, and dimension. Specifically, these are:

1. Functoriality: Hn : Top! R-Mod is a functor.

2. LES: for any pair (X,A) there is a long exact sequence of the form

· · · Hn(A) Hn(X) Hn(X,A)
�
 Hn+1(A) · · ·

3. Homotopy invariance: X
h
⇠ Y implies that Hn(X) = Hn(Y)

4. Excision: if (X,A) is a pair and Ū ⇢ A�
⇢ X, then the inclusion map

i : (X � U,A� U)! (X,A) induces an isomorphism in cohomology

5. Dimension: Hn(⇤) = 0 where ⇤ = {pt}

Of these, excision is probably the subtlest and most geometrically substan-
tial, since it redounds to the observation (often presented via Mayer-Vietoris)
that we can pass from a space X to its open covers through, for example, sub-
division, and then try to re-stitch the cohomology h(X) from its cover via a
homotopy pushout.

Each cohomology theory may also come in a variety of flavors depending on
the choice of coe�cient group. There are other nice structures defined on coho-
mology: cup product, cohomological operations and Steenrod squares, bialge-
bra structure, classifying spaces, Postnikov towers. And a wand for computing:
spectral sequences. Remove the dimension axiom and we obtain extraordinary
cohomology theories like topological K-theory and complex cobordism.

The axioms serve as an interface between algebra and topology and in that
sense were the culmination of over a century’s work; as [71, pg. 3] points out,
one of their great virtues is that they “clearly and unambiguously separated the
algebra from the topology” as part of the developing separation of homologi-
cal algebra from algebraic topology in the 1940’s and 50’s. Before that, these
subjects shared a common prehistory in the classical study of “connectedness
numbers” and homology numbers by Riemann, Betti, and Poincaré in the nine-
teenth century.14 The axioms or something like them were probably inevitable
as early as De Rham’s theorem in 1931 (or even as early as Stoke’s theorem).
By solidifying our understanding of (co)homology, the axioms provide a basis
for exploring

(1) other possible interfaces between algebra and topology, especially homo-
topy

14Actually the history of topology between Poincaré and Eilenberg is quite interesting, and
it suggests some rather di↵erent emphases—particularly on duality and cohomotopy—than
the standard, pre-spectra curriculum does today.

24

(2) similar, “cohomological” interfaces between other categories, cf. Sec-
tion 2.3.

We are interested in (2). However, this later story depends crucially on an
understanding of (1).

Question 13. Has there ever been a case where we constructed a new coho-
mology theory directly from the axioms in a formal way, by adding axioms?

Eventually it will be important to note the connections between spectral
sequences and persistent homology [33], which might give us a direct line to the
assertion “cohomology formalizes assumptions about structure in data”.

3.2 The category of spectra

We can readily see from examples that homology is a stable phenomenon, e.g.

hn(X) ' hn+1(⌃X)

where ⌃ is our usual (based) suspension functor. Less readily, we can see that
homotopy is an unstable phenomenon, which may be understood as the negative
of the statement above or, as in Blakers-Massey, as the failure of the excision ax-
iom to hold in all dimensions. I will not explore this line of thought, which arose
from Freudenthal’s famous observation of a “stable range” of dimensions for the
homotopy groups of spheres, except to point out that spectra are one setting in
which such theorems and observations—along with a raft of duality theorems
(Poincaré, Alexander, Spanier-Whitehead)—become obvious. Spectra, in other
words, are a convenient language for stable homotopy. Stable homotopy, of
course, is important because stable homotopy groups (of maps) are the natural
linear approximations to homotopy sets (of maps).

Often we want to study the space of (basepoint-preserving) maps from a
topological space X to a topological space Y , and a reasonable structure on
this hom-space is the set of homotopy classes of based maps, denoted [X,Y] :=
⇡0(hom•(X,Y)). Unfortunately, the set [X,Y] does not usually have any alge-
braic structure; only in certain special cases can we analyze [X,Y] as a group,
much less an abelian group (as we do in cohomology). It turns out that we can
organize these special cases under the heading of spectra.

Suppose X is the suspension of another pointed space X 0. Then [X,Y] '
⇡1(hom•(X 0, Y)) admits a group structure by the definition of ⇡1. Further, if X 0

is itself the suspension of some space X 00, then [X,Y] ' ⇡2(hom•(X 00, Y)) will
be abelian since ⇡2 maps to abelian groups (this fact is elementary for ⇡2, but
for higher ⇡n it follows from the Eckmann-Hilton argument). One can extend
this to natural maps

[X,Y]! [⌃X,⌃Y]! [⌃2X,⌃2Y]! ...

where, intuitively, each [⌃kX,⌃kY] is a linear approximation to [X,Y]. Assum-
ing X,Y are finite, pointed CW complexes, the Freudenthal suspension theorem

25

26

Figure 3.1: Perspectives on cohomology

tells us that such a sequence will always stabilize, and we define the stable re-
sult as [X,Y]s := colim [⌃kX,⌃kY]. From the above we know that this is an
abelian group, and we call it the group of homotopy classes of stable maps from
X to Y .

So we are interested in these di↵erent approximations of [X,Y] and how they
relate to [X,Y] and to each other. But instead of considering all these di↵erent
homotopy classes of maps in di↵erent degrees, we can consider just one map of
spectra which carries the essential information. The following definitions come
from [32] (note the replacement of simplicial sets for topological spaces).

The homotopy groups ⇡n fall badly at being homology theories, in the sense
of being preserved under pushouts and cofibrations (all of the homology ax-
ioms are essentially about pushouts). But the idea is that when the spaces
are highly connected, ⇡n behaves like a homology theory. This follows from
Blakers-Massey.

Look at Robert Graham’s work on synthetic homotopy theory in HoTT; we
can construct “regular homology” as an approximation to stable homotopy, in
which suspension (i.e. smashing X with Si), is replaced with smashing X with
a truncation of Si. Hreg

n
(X) = limi ⇡n+i(X ^ ||Si

||i). Regular homology has a
very similar definition with stable homotopy.

Definition 3.1. A spectrum is a sequence of simplicial sets

E = {E0, E1, E2, ...}

together with structure maps S1
^ Ek ! Ek+1 for k � 0. A map of spectra

f : E ! F is a sequence of maps fk : Ek ! Fk compatible with the structure
maps in the sense of diagrams

S1
^ Ek

//

idS1^fk

✏✏

Ek+1

fk+1

✏✏
S1
^ Fk

// Fk+1

We let Sp(Top) denote the usual category of spectra of topological spaces.

Let ⌃1X denote the usual suspension spectrum of X with En = ⌃nX,
and let S denote the sphere spectrum with E0 = S0 and En = ⌃nS0. Then,
substituting X = Sn into our definition of [X,Y]s, we can define the (stable)
homotopy groups of a spectrum:

Definition 3.2. The (stable) homotopy groups of a spectrum E are

⇡q(E) = [S, E]q = colim
k

⇡q+k(Ek)

where the colimit is over the maps ⇡q+k(Ek) ! ⇡q+k(⌦Ek+1) ⇠= ⇡q+k+1(Ek+1)
for k > �q.

27

Another standard way of introducing and motivating spectra (for example,
in [69, ?, ?]) is to describe the properties we want the stable homotopy category
Ho(Sp(Top)) to possess, e.g. it should have a suspension spectrum functor,
be additive, be triangulated, satisfy Brown representability, etc.. Surprisingly
(for someone interested in spectra because they help abstract cohomology) this
is actually the most historically accurate description, at least in the years before
Boardman finally gave a satisfactory construction of the category by applying
colimits to finite CW spectra—the lead-up to a successful definition of the sta-
ble homotopy category lay precisely in the development and maturation of a
language for expressing the requirements above (as well as a “hare”-like leap
to embrace the new, abstract language). In its favor, the approach is also very
convenient for proofs, which likely played and plays a role in its usage. It also
respects the idea that there are many possible “categories of spectra”—of CW
spectra, symmetric spectra, simplicial “pre”spectra (our definition above), S-
modules—that descend to the same stable homotopy category Ho(Sp(Top)).

Question 14. How is the construction of new cohomology theories, using prop-
erties of Ho(Sp(Top)), connected to the construction of new spectral sequences
which take groups in one cohomology theory then converges to another? I’m
sure that it is, but the later constructions are still mysterious to me.

3.3 The derived setting

[I promise to fill this in once I finish my Homological Algebra class.] From the
E-M axioms...

The theory of spectra is a language for stable homotopy, but with respect
to actual computations

1. relate spectra to derived categories
2. basic motivation of hom and ⌦.
3. the derived functor construction
4. the derived category construction (ref. Thomas’ note)
[?] [?]
[Below is Wikipedia’s introduction of the derived setting, for reference.]

Definition 3.3. Let A• be a complex in an abelian category. Define the kth
cohomology functor by

Hk(A•) = ker(dk)/im(dk+1)

where dk : A(k)
! A(k�1) is the coboundary map.

By virtue of being a functor, Hk satisifies the following diagram for any

28

morphism u:

A•

u

✏✏

H
k
// Hk(A•)

H
k(u)

✏✏
B•

H
k
// Hk(B•)

The properties of abelian categories guarantee that Hk is a cohomology theory,
i.e. that it has a long exact sequence of homology and satisfies excision.

Definition 3.4. Let �(X,�) : F ! F (X), u 7! uX be the global sections
functor over X from sheaves of modules on X to modules). The n-th sheaf
cohomology functor is

Hn

Sh(X,F) := Rn�(X,F),

where Rn� is the n-th right derived functor of �.

Grothendieck’s definition of sheaf cohomology, now standard, uses the lan-
guage of homological algebra. The essential point is to fix a topological space
X and think of cohomology as a functor from sheaves of abelian groups on X
to abelian groups. In more detail, start with the functor E ! E(X) from
sheaves of abelian groups on X to abelian groups. This is left exact, but in
general not right exact. Then the groups Hi(X,E) for integers j are defined
as the right derived functors of the functor E ! E(X). This makes it auto-
matic that Hi(X,E) is zero for i < 0, and that H0(X,E) is the group E(X)
of global sections. The long exact sequence above is also straightforward from
this definition.

The definition of derived functors uses that the category of sheaves of abelian
groups on any topological space X has enough injectives; that is, for every sheaf
E there is an injective sheaf I with an injection E ! I. It follows that every
sheaf E has an injective resolution:

0! E ! I0 ! I1 ! I2 ! · · · .

Then the sheaf cohomology groups Hi(X,E) are the cohomology groups (the
kernel of one homomorphism modulo the image of the previous one) of the
complex of abelian groups:

0! I0(X)! I1(X)! I2(X)! · · · .

Standard arguments in homological algebra imply that these cohomology groups
are independent of the choice of injective resolution of E.

The definition is rarely used directly to compute sheaf cohomology. It is
nonetheless powerful, because it works in great generality (any sheaf on any
topological space), and it easily implies the formal properties of sheaf cohomol-
ogy, such as the long exact sequence above. For specific classes of spaces or

29

sheaves, there are many tools for computing sheaf cohomology, some discussed
below.

The chief problem in these cases is to construct a resolution (the “derived”
or “acyclic” object) which is functorial.

Need a discussion of Whitehead’s theorem on complexes. E.g. the “com-
plexes good, homology bad” motto.

The chief problem...
However, the most geometrically-motivated approach comes from the homo-

topy category, and that story begins with the derived approach of Tor and Ext
by Eilenberg; in the modern parlance, these are functors derived from the tensor
product functor and the hom-functor, respectively. This language, while based
in algebraic necessities, tends to obscure the geometric nature of the problem
since all derived functor approaches come down to simplifying the analysis of
certain resolutions, which are themselves ways of organizing the relations (and
relations between relations, and so on) within a given set of geometric phe-
nomena (cycles and boundaries, polynomial equations and syzygies, etc.). The
derived functor is the functor defined on this n-categorical structure by the ac-
tion of the original functor on the space. Since one can easily obtain the precise
definition from the nLab or from Hatcher, I will not mention it here.

Question 15. In what way are spectral sequences “coordinatizations” of de-
rived functors?

3.4 Model categories

Model categories were originally developed by Quillen in order to deal with the
set-theoretic size issues arising from localization, for example in the homotopy
category Ho(C), where we localize with respect to weak equivalences.15

Model categories are useful when we try to define notions of homotopy on
categories beyond Top. In another direction, we can use 1-groupoids (or 1-
categories) to do the same thing; in either case, the idea comes down to carrying
the structure of sSet, the category of simplicial sets, to the category in which
we want to do homotopy. We construct a synthetic setting where concepts like
“path” and “point” are primitives, without inherent topological meaning.16

Definition 3.5. A (Quillen)model category is a categoryM together with three
classes of morphisms, each closed under composition: weak equivalences W,
fibrations Fib, and cofibrations Cof. The morphisms must satisfy the following
axioms:

1. M is complete and cocomplete.

2. Two-out-of-three: if two out of the set f, g, and gf are in W, then so is
the third.

15I’m told that a completely di↵erent approach was adopted by Grothendieck using
Grothendieck universes.

16Perhaps a better word is “abstract” rather than synthetic. The categorical approach to
paths and points is starkly di↵erent from that of synthetic geometry.

30

3. Retract: if g is a retract of h and h is in any of W,Fib, or Cof, then g is
as well

4. Factorization: if g : X ! Y is a morphism in M, then it can be factorized
as fg � ig or pg � jg, where ig is a “trivial” cofibration (meaning it is also
a weak equivalence) and fg is a fibration, and jg is a cofibration and pg is
a “trivial fibration” (same as above).

The set (W,Fib,Cof) is called a model structure on M.

The idea of the model category is that we are carrying additional data (in
the form of Fib and Cof via the weak factorization) associated to the weak
equivalences that allows us keep track of the higher homotopies associated to
the weak equivalence; in this way, the object in the model category “models”
the spaces (1-groupoids) sitting in some 1-category.17

Example 3.6. sSet, sSet•, Top, Top•, and Sp(Top) (to be discussed) are
model categories.

As promised, we now give a model structure on the category of spectra.

Definition 3.7. A stable equivalence is a map of spectra f : E ! F which
induces an isomorphism on stable homotopy groups ⇡s

i
(E) and ⇡s

i
(F).

Note that one can invert all the stable equivalences, in which case we obtain
the homotopy category of spectra Ho(Sp(Top)), e.g. the stable homotopy
category, where all weak equivalences are now isomorphisms.

Definition 3.8. A pointwise weak equivalence (resp. fibration) of spectra is a
map E ! F such that for every n � 0 the map En

! Y n is a weak equivalence
(resp. fibration) in sSet. A cofibration is a map with the left lifting property
with respect to the maps that are both pointwise equivalences and pointwise
fibrations.

This pointwise structure defines a model category structure on the category
of spectra.

Definition 3.9. A stable fibration is a map in Sp(Top) with the right lifting
property with respect to all cofibrations that are stable equivalences. The stable
structure on Sp(Top) consists of the stable equivalences, the stable fibrations,
and the cofibrations.

By proposition ? in Bousfield [?], the stable structure defines a model cate-
gory on Sp(Top).

17This setup serves the same purpose as the stack of identity types sitting above a type in
Martin-Löf type theory (in fact, I believe Awodey and Warren constructed homotopy type
theory this way, by defining Martin-Löf type theory in a model category). For more on the
type-theoretic formalism, refer to Section A.

31

3.5 Brown representability

[This section is incomplete.]
Brown representability (and its earlier corollary, the characterization of Eilenberg-

MacLane spaces as classifying spaces H̃n(X;G) ' [X,K(G,n)]) are natural
consequences of the cohomology axioms—one may regard them as immediate
applications of the axioms.

We will first review Hatcher’s proof for ⌦-spectra, before considering Lurie’s
statement of Brown representability and (portions of) his proof.

Recall that an ⌦-spectrum is a spectrum where the structure maps Ek !

⌦Ek+1—here reformulated in terms of the loopspace functor ⌦—are weak equiv-
alences for all k. (Examples include the familiar Eilenberg-MacLane spectrum
HG = {K(G,n)} for various abelian groups G.) The following is Theorem 4.58
in Hatcher:

Theorem 3.10. If {Kn} is an ⌦-spectrum, then the functors X 7! hn(X) =
hX,Kni, n 2 Z, define a reduced cohomology theory on the category of base-
pointed CW complexes with basepoint-preserving maps.

The proof of this result comes down to checking the axioms and constructing
the long exact sequence, and we do not reproduce it here. Brown representability
states the converse: that every cohomology theory (in topology) arises from a
spectrum. The following is Theorem 4E.1 in Hatcher:

Theorem 3.11 (Brown representability). Every reduced cohomology theory on
the category of basepointed CW complexes and basepoint-preserving maps has
the form hn(X) = hX,Kni for some ⌦-spectrum {Kn}.

Proof. Consider a single functor h(X) satisfying the cohomology axioms; we
want to show that it can be represented as hX,Ki for some K. So we first show
that the map

Tu : hX,Ki ! h(X)

f 7! f⇤(u)

is a bijection for a certain u 2 h(K). Hatcher shows this through a series
of intervening lemmas; we will compress those in order to emphasize the main
action of the proof, which is to illustrate the existence of a universal cohomology
class u 2 h(K;G) whose pullback to hX,Ki determines the bijection.

The proof comes down to verifying a series of commutative diagrams. Con-
sider a cohomological functor h to abelian groups. Then there should exist a
CW complex K for any choice of X such that the following diagrams hold.

(1) h(K)
f
⇤

// h(X)

hX,Ki
zz Tu

::

32

First o↵ we note that K must be connected.
Note that Tu : hX,Ki ! h(X) is the map defined by Tu(f) = f⇤(u).

(2) (A, a)
f //

i

✏✏

(K,u)

(X,x)

g

::

It remains to stitch together all the Kn associated to a family of cohomology
functors hn, i.e. to demonstrate that each Kn is weakly equivalent to ⌦Kn+1

for all n.

[Discuss the strategy and reasoning behind Hatcher’s approach.] As ⌦-
spectra are the cofibrant objects in the category of spectra, it generally su�ces
to show it for just the ⌦-spectra.

...
By contrast,
In the 1-category setting, Brown representability becomes
Now we consider Brown representability in the 1-category setting. The

following theorems and definitions are from Lurie [69].
A functor F : Cop

! Set is representable if there exists an object X 2 C and
a point ⌘ 2 F (X) which induces bijections homC(Y,X)! F (Y) for every object
Y 2 C. Assuming C is presentable, that is ..., then the functor F is representable
if and only if it takes colimits in C to limits in Set.

Definition 3.12. An 1-category (also known as a weak Kan complex [?] or a
quasi-category [?]) is a simplicial set C which satisfies the following extension
condition:

Every map of simplicial sets f0 : ⇤n

i
! C can be extended to an

n-simplex f : �n
! C, provided that 0 < i < n.

Definition 3.13. A category is presentable if ...

Definition 3.14. Suppose C is a category with finite coproducts. An ob-
ject X 2 C is a cogroup object of C if it is equipped with a comultiplication
X ! X [X with the following property: for every object Y 2 C, the induced
multiplication

homC(X,Y)⇥ homD(X,Y) ' homC(X [X,Y)! homD(X,Y)

The following is Theorem 1.4.1.2. in Lurie [69]:

Theorem 3.15 (Brown representability). Let C be a presentable 1-category
containing a set of objects {S↵}↵2A with the following properties:

1. Each object S↵ is a cogroup object of the homotopy category Ho(C).

33

2. Each object S↵ 2 C is compact.

3. The 1-category C is generated by the objects S↵ under small colimits.

Then a functor F : Ho(C)
op
! Set is representable if and only if it satisfies

the following conditions:

(a) for every collection of objects C� 2 C, the map F (t�C�)!
Q
�
F (C�) is

a bijection

(b) for every pushout square

C //

✏✏

C 0

✏✏
D // D0

in C, the induced map F (D0)! F (C 0)⇥F (C) F (D) is surjective.

Proof. That (a) and (b) follow from the representability of F is straightforward,
since ...

Remark 3.16. There’s a certain kind of “is-just” explanation in category theory
(or rather, in a certain line of pure category theory papers) which is sometimes
jarring, like “Axiom J is just Yoneda”. I can guess at why people do it, but there
must be a better way of illustrating or presenting the categorical structure, that
better motivates the presentation. Exposition matters!

3.6 A list of topological constructions

Let X be a topological space, i.e. a carrier set X endowed with a topology ⌧ of
open sets. All maps are continuous unless noted otherwise.

On spaces

The cone CX = X ⇥ I/X ⇥ {0}.
The suspension SX = CX [X CX.
The reduced suspension ⌃(X) is the suspension of (X,x0) with basepoint

the equivalence class of (x0, 0).
The (Cartesian) product X ⇥ Y .
The coproduct (aka wedge sum, aka 1-point union) X ^X. Key theorem is

Van Kampen.
The smash product X _ Y = X ⇥ Y/X ^ Y .
The join X ⇤Y is the space of all line segments joining points of X to Y , i.e.

X ⇥ Y ⇥ I/(x, y1, 0) ⇠ (x, y2, 0) and (x1, y, 1) ⇠ (x2, y, 1). Worth noting that
the join of n points is an (n� 1)-simplex.

The pair (X,A) for A a subspace of X.
A covering space X̃ of X is (essentially) just the union of an open cover of

X.

34

The loopspace ⌦X is the space of (based) maps from S1 to X. Key fact:
⇡i(⌦X) = ⇡i+1(X). More abstractly, ⌃(�) a ⌦(�).

The free loopspace LX is the space of maps from S1 to X.
The (James) reduced product (aka the free monoid generated byX) J(X) =.
The infinite symmetric product (aka the free abelian monoid generated byX)

SP (X) = J(X)/ ⇠p=
S

1

n=1 SPn(X) with the weak topology, where SPn(X) =
Xn/ ⇠p and ⇠p is the equivalence relation we define for points that di↵er only
by a permutation of coordinates. Note that SP (X) is a commutative H-space,
and the Dold-Thom theorem implies that SP is a functor taking Moore spaces
M(G,n) to Eilenberg-MacLane spaces K(G,n).

On maps

Let f : X ! Y be a continuous map.
The mapping cylinder Mf = Y [(x,1)⇠f(x) X ⇥ I.
The mapping cone Cf = Y [(x,1)⇠f(x) CX.
The mapping torus for f : X ! X is Tf = X ⇥ I/(x, 0) ⇠ (f(x), 1).
The suspension Sf : SX ! SY .
The homotopy fiber.
The Hopf invariant H(f).

For complexes

The n-skeleton Xn is...
The Euler characteristic is the sum of even-dimensional simplices (or cells)

minus odd-dimensional ones. Perhaps the most basic homotopy invariant.
Homology (where is Carlsson’s formulation?).
Cohomology.
The Postnikov tower.
The (Quillen) plus construction.

For computing homology

There are many di↵erent ways to compute homology depending on the particular
homology theory. Simplicial homology, for example, reduces down to rewriting
a matrix quotient into Smith normal form [31] (assuming we have a basis for
the space). Other questions like “what is Hn(P1)?” or “what is Hn(Sk

_

Sk)?” or “computeH⇤(K(Z, n),Q) using a spectral sequence” or “findHn(V) of
some projective variety” (all familiar from classroom assignments) involve more
general techniques which depend on a more refined analysis of the pathspace
and/or a particular decomposition of X (as a fibration, for example).

35

“Here in fact we find a basic methodological characteristic common
to all genuine statements of principles. Principles do not stand on the
same level as laws, for the latter are statements concerning specific
concrete phenomena. Principles are not themselves laws, but rules
for seeking and finding laws. [...] The power and value of physical
principles consists in this capacity for “synopsis,” for a comprehen-
sive view of whole domains of reality. Principles are invariably bold
anticipations that justify themselves in what they accomplish by
way of construction and inner organization of our total knowledge.
They refer not directly to phenomena but to the form of the laws
according to which we order these phenomena.” - Ernst Cassirer,
Determinism and Indeterminism in Modern Physics, 1956

4 Organizing principles in algebraic geometry

One thing that I am often told is that using category theory lets one avoid
many redundancies, and that using it systematically gives one many e�cien-
cies. “Build the theory and good things will happen,” I am told. To which I
counter, but doing anything systematically gives one many e�ciencies. Pick a
field that uses category theory extensively: algebraic geometry. What prompted
a systematic approach in the first place? Or, if that question is too broad:

Question 16. What are the relevant aspects of classical algebraic geometry
that made it useful to turn to a categorical language? And how do I translate,
perhaps partially, these aspects to other fields?

A failed answer, to me, would be that the definitions of algebraic geometry
were merely definable, in the sense that they could be written down in the
language of whatever logic, even in the language of category theory.18 Just
because a theory is definable in a language does not mean it is useful to do
so, else we would all be swamped with quantum-mechanical descriptions of
Marxism. Just so, if I do not expect set theory to solve all the problems in my
field, then why should I expect category theory to do the same?

A better but still insu�cient answer would be that category theory is more
e�cient or “easier to swallow”, in the sense of the old Atiyah quote, than what-
ever was there before in classical algebraic geometry.

The aim of theory really is, to a great extent, that of systematically
organizing past experience in such a way that the next generation,
our students and their students and so on, will be able to absorb
the essential aspects in as painless a way as possible, and this is the
only way in which you can go on cumulatively building up any kind
of scientific activity without eventually coming to a dead end. [5]

18Developed fully, I suppose this line of reasoning would lead to model theory, both as a
manual for how to study a theory via definable equations, “the model theory of algebraic
geometry”, as well as its own exemplar of a field of study built on definable formulae, “model
theory = algebraic geometry minus fields”.

36

I don’t doubt that the structural features of category theory play a role in man-
aging the complexity of algebraic geometry, and that this role was valuable, even
necessary for the development of modern algebraic geometry. But e�ciency is
not a su�cient explanation for Grothendieck’s categorical reformulation of alge-
braic geometry nor was that reformulation based on entirely or even mostly on
categorical ideas. “Applied category theory”, in this case, wasn’t just diagrams.

A successful answer would give us a selection of new results in algebraic
geometry that came out of the categorical reformulation. It would show us the
specific categorical mechanisms that allowed mathematicians to envision these
new results and new proofs. It would tell us how the structure of classical
algebraic geometry—the relationship between its open problems and its extant
tools—invited and shaped the use of category theory. Most importantly, it
would show us what was missing from category theory, and how those gaps
were addressed.

The best answer would help us predict the success of applying category
theory to a field and teach us how to adapt categorical and algebraic tools to
the needs of di↵erent disciplines. It would tell us why category theory became
fundamental for fields like algebraic geometry and algebraic topology but not
(yet) for fields like combinatorics or probability theory.

I do not know why category theory proved so useful in algebraic geometry—
if I did, I would not be asking the question! But I have a few allied intuitions,
all centered around this idea: category theory is a computational* lens on math-
ematics.19

(*) I have an unconventional definition of ‘computational’, so I have labeled it
with an asterisk. A computational* theory is a theory that e�ciently ab-
stracts out questions of computability, complexity, and e�ciency to focus
on data access and manipulation. The fact that a computational* the-
ory does abstract over the model of (normal) computation or deduction is
important; see claim (1) below.

This intuition is based on progress connecting the theory of computation with
computational applications in the sciences, e.g. see workshops at Berkeley
(2002) and the IAS (2014); a network of connections between category the-
ory and theoretical computer science, often through denotational semantics of
models of computation; and some preliminary speculation relating categorical
constructions to presentations of structured data in machine learning. (I be-
lieve that it was Emily Riehl who called category theory “a way of displaying
the data, of all sorts”.)

In what way was category theory a computational* lens on algebraic geom-
etry? My best guess is that category theory

(1) clearly distinguished the computational*, accounting aspects of classical
algebraic geometry from the underlying topological axiomatization (the
Zariski topology),

19But not necessarily on the sciences, at least not without a mathematical account of what
it means to have an “experiment”.

37

(2) gave a coherent way of representing and abstracting over the accounting
aspects via a new tool: cohomology theories with coe�cients in a sheaf,
and

(3) this sheaf cohomology filled a gap in category theory in that it allowed us to
manipulate the computational* abstraction in tandem with the topological
axiomatization.

The last assertion, (3), is the critical one. I modeled the first parts of my
guess on May’s [71] characterization of the Eilenberg-Moore axioms for co-
homology, which “clearly and unambiguously separated the algebra from the
topology”, but I suspect that what makes cohomology in algebraic geometry
“computational” (and not just in the sense of “do calculations”, which hap-
pens anyway in algebraic topology) is the way in which it interacts with the
topological axiomatization.

The assertion (3) may very well be wrong. It may not be at all productive
to think of cohomology computationally*, of topology as separate from those
aspects, or of sheaf theory and category theory as complementary. But I have
to start somewhere. Based on my guess, I have reformulated Question 16 below.

Question 17. Knowing what a sheaf is and what it is for—namely, to set up
the machinery for cohomology—what is the corresponding notion in classical
algebraic geometry, i.e. in the language of rings, function fields, and rational
maps?

I have split my answer to Question 17 into three parts: a review of sheaves,
a review of sheaf cohomology (via Cech cohomology), and a preliminary discus-
sion of the Weil conjectures and Weil cohomology. In Section 4.2, I form an
explanation that begins with the classical versions of Riemann-Roch and genus
over C, and then show how sheaf cohomology facilitates extensions of Riemann-
Roch to arbitrary fields (still algebraically-closed). In Sections 4.3-4.5, I review
the cohomological machinery needed to prove this result, up to Serre duality.
In Section 4.6, I then state that a good cohomology theory (in algebraic ge-
ometry) is something that imitates cohomology theories in algebraic topology,
and that this means, for the purposes of number theory, that it ought to be a
cohomological witness to the Weil conjectures. Finally, in Section 4.7, I explain
what it means for a cohomology theory to witness the Weil conjectures, and
how the Weil conjectures relate back to my characterization of category theory
as a computational* lens on algebraic geometry.

Remark 4.1. Originally this note was meant to be a discussion of motives in
algebraic geometry, following Voevodsky and Morel’s own exposition in [117] and
[83]. Since that was far too hopeful, I have tabled that discussion to Section
G. Instead, I will give the very first part of that discussion on sheaves and
topoi, following mainly Serre [96], with reference to historical notes of Gray [46]
and Dieudonne [27] in addition to the class notes of Ritter and Vakil [114], an
introductory note on sheaf theory by Lovering [67], an introductory note on the
Weil conjectures by Osserman [87], the first three chapters of Hartshorne [49],

38

and a large number of online sources, especially the nLab and the Stacks Project.
Where possible, I have updated the definitions and notation of historical results
to be consistent with the modern, categorical standard.

4.1 A very brief review of sheaf theory

The original faisceau (Leray, 1945 [62]) were built to capture variation in the
fibers of a projection, as in a sheaf of modules over a topological space. The first
example of a sheaf was the sheaf assigning to U ⇢ X its pth cohomology group,
i.e. an interpretation of Steenrod’s cohomology with local coe�cients and its
use in the study of covering spaces of nonorientable manifolds (see Section 3.H
of [50]). So the origins of sheaf theory were fundamentally topological. Leray
later described operations on sheaves (images, quotients, limits, colimits, etc.),
which were clarified and applied by Cartan and his students to great e↵ect in
complex analytic geometry. It was Serre, in the seminal “Faisceaux algébriques
cohérents” (FAC) [96], who brought these methods from the Cartan seminaire to
algebraic geometry; after Serre, the development of modern algebraic geometry
is largely due to Grothendieck and his collaborators in SGA and EGA. For
the most part, this note will deal with the ‘liminal’ algebraic geometry (1955-
1960) between the publications of FAC and SGA, i.e. with the slightly easier
exposition of sheaf cohomology on varieties rather than on schemes.

The most enlightening motto I have found for sheaf theory is this: sheaf
theory defines the function theory of a space so that it respects the “local”
structure at points. A manifold, for example, looks like Euclidean space near its
points, so we would like functions defined on a manifold to behave, near points,
like functions on Euclidean space. An algebraic variety looks like the zero set of
some polynomials at its points, and we would like “regular functions” defined
on the variety to behave like polynomials near its points. Much of sheaf theory
comes down to making this idea precise.

Of course, not every “space” is a topological space, nor does every topolog-
ical space have points (cf. locales), nor does every pointed topological space
separate points (cf. the Zariski topology). To pre-empt these concerns, we will
define sheaves on sites rather than on topological spaces. A site is a category
C equipped with a “topology” ⌧ defined in terms of sieves: collections of mor-
phisms in C with codomain U that model the idea of a covering family over
U . Where defined, ⌧ is called the Grothendieck topology of C; I leave the exact
definition of sieve and Grothendieck topology to the nLab.20

20I hope that I am not simply being obtuse in choosing to defines sheaves in term of sites.
I have a tendency to view anything with a topology as an algebraic topologist would, but the
most relevant aspect of the Zariski topology is that it is not algebraic topology in the same
sense that a space like S

n is with its usual topology, cf. Example ?? or “topology is about
semidecidable properties”. The Zariski topology is a topological translation of something fun-
damentally algebraic, much like later “topological” axiomatizations such as the étale topology
or the Nisnevich topology, which do in fact require the site-theoretic formulation. Just so,
sheaves are not algebraic topology in the same sense that fibrations and spectral sequences
are, no matter their common origins with Leray. Sheaves are specialized for spaces where the
compositional and combinatorial assumptions of algebraic topology break down. [I keep going

39

In short, a presheaf is a contravariant functor to Set, and a sheaf is a presheaf
F : Cop

! Set with an associated topology on C, such that the behavior of F
on an “open set” U in C can be computed by gluing together the behavior of F
on subsets of U . “Behavior”, in the case of a sheaf, comes down to the existence
and uniqueness of sections, i.e. elements of the set F (U). Formally:

Definition 4.2. A sheaf is a presheaf F on a site (C, ⌧) satisfying the following
axioms:

1. (Existence of gluing) Suppose the following conditions are satisfied: (1)
{pi : Ui ! U}i2I is a covering family of U 2 ObC and (2) for each i 2 I

we have a section si 2 F (Ui) such that on all “overlaps” Ui

f

 K
g

! Uj ,

F (f)(si) =F (K) F (g)(sj).

Then there exists a section s 2 F (U) such that F (pi)(s) = si for every
i 2 I.

2. (Uniqueness of gluing) If {pi : Ui ! U}i2I is a covering family of U 2
ObC, and if s, t 2 F (U) are sections such that F (pi)(s) =F (Ui) F (pi)(t)
for all i 2 I, then s = t.

In the context of a sheaf, the morphism F (f) : F (V) ! F (U) induced on
sections by a morphism f : U ! V is called a restriction map, based on the intu-
ition that we are restricting a function on V to a subset U ⇢ V . We sometimes
call sections local sections to emphasize that they are the local components in
a gluing. Any section constructed by gluing is called a global section.

Example 4.3. The skyscraper sheaf over U , which sends U to a set and every-
thing else to the empty set.

Example 4.4. The sheaf of smooth functions on a real manifold. The fact that
smooth functions form a sheaf should not be that surprising, since the sheaf
structure merely quantifies the fact that smoothness is already a local-global
property, namely smooth ' locally smooth.

Example 4.5. The sheaf of analytic functions on a complex manifold.

Example 4.6. The sheaf of sections of a vector bundle ⇡ : E ! B, where the
sections S(U) are maps s : U ! ⇡�1(U).

Example 4.7. The sheaf of germs of functions (on some object X) with values
in an abelian group G, where the sections are functions s : U ! G and the
restriction maps are just function restriction.

Example 4.8. The sheaf of events of a quantum measurement scenario [1], or
the sheaf of a choice scenario [122].

Example 4.9. The sheaf of sets on a poset with the Alexandro↵ topology, which
is used to represent the functional dependencies of (dynamical) systems in [92].

back and forth on whether this statement is right or wrong.]

40

Example 4.10. Continuous, discrete, and synchronous interval sheaves corre-
sponding to di↵erent notions of time in dynamical systems, which are conceived
as spans over such sheaves [104].

Example 4.11. The constant presheaf, which sends every U identically to a set
A, is not typically a sheaf. By the first sheaf condition, any two local sections
ai, aj 2 A defined on disconnected open sets Ui, Uj , respectively, should glue
into a global section since they agree trivially on “all overlaps” Ui \ Uj = Ø.
However, this global section cannot exist in F (Ui [Uj) = A if ai 6=A aj .

There is a special language for sheaves when C = Op(X), the category of
open sets and inclusions of a topological space X.

Definition 4.12. Let F be a sheaf (or presheaf) on Op(X) for some topological
space X, and suppose x is a point in X. Let U, V 2 Op(X) and S =

F
U3x

F (U)
be their disjoint union. Then:

1. The stalk Fx of F at x is the set of equivalence classes in S under the
relation f ⇠ g, where f ⇠ g if there exists some open W ⇢ U \ V
containing x such that f |W = g|W . Categorically, Fx is the colimit over
the system of objects {F (U) : x 2 U} where the arrows are the restriction
maps between objects.

2. The equivalence classes of a stalk are called the germs of the stalk. Intu-
itively, germs are defined in a small neighborhood of x, and can be used
to compute local properties like the derivative of a section but none of the
actual values of the section anywhere else besides x.

3. A section s 2 F (U) can be interpreted as a map s : U ! F . There are
natural projection maps s 7! sx taking sections to germs.

4. For an inclusion i : V ,! U , the restriction map on sections is just function
restriction.

F (i) : F (U)! F (V)

s 7! s|V

5. The étale space of a sheaf F (but not a presheaf) is F =
Q

x2X
Fx. F has

a topology inherited from X taking the F (U) as a basis, which motivates
studying its topological features such as (co)homology.

Example 4.13. The sheafification of a presheaf is the left adjoint to the inclusion
from Sh ! PSh. Intuitively, we can think of sheafification as a process of
adding all the global sections that are missing from the presheaf, and of deleting
all the non-zero global sections that are locally zero.

Sheafification is an extremely important part of the machinery of sheaf the-
ory. It is quite literally the process by which one conforms some global property
defined on sections, like being constant, onto a topological structure.

41

x |

-2

OX,�2

|

0

OX,0

|

2

OX,2

•• •

(x + 2) (x) (x � 2)

(x + 2, x)

(x + 2, x � 2)

(x, x � 2)

(x + 2, x, x � 2)

mx ⇢ OX,x

OX ({�2, 0})

OX ({�2, 2})

OX ({2, 0})

OX (X) = k[X]

Figure 4.1: A representation of the sheaf of regular functions OX over X =
V(x3

�4x), based on David Mumford’s sketch of the sheaf over SpecZ[x] in The
Red Book of Varieties and Schemes. Vertical lines represent stalks over points.
Horizontal lines represent (elements of the étale space corresponding to) global
sections over subvarieties of X.

Example 4.14. The constant sheaf on a topological space X with value A, AX ,
is defined as the sheafification of the constant presheaf on X with value A. It
can be obtained by adding all the global sections defined by gluing elements of
a 2 A across disconnected open sets. Assuming that the underlying site has
colimits (and thus stalks), the constant sheaf is identically A on stalks and has
“locally constant” global sections, i.e. constant over connected components.

Example 4.15. The sheaf of regular functions OX on an a�ne variety X, a.k.a.
the sheafification of the presheaf of (globally) rational functions on X.

Example 4.16. More generally, OX is an example of a sheaf called the structure
sheaf O of a locally ringed space (X,O).

Example 4.17. The sheaf of rational functions KX on an a�ne variety X, not
to be confused with the sheaf of “locally rational functions” OX above, which is
a subsheaf of KX . On a�ne varieties (i.e. integral schemes), KX is a constant
sheaf, and the stalk KX,x over any point in X corresponds to the function field
of X. On general schemes, KX leads to the field of birational geometry.

My prototypical example of a sheaf, following Serre, is the structure sheaf of
an a�ne variety X over a field k, OX : Op(X)! Ring. OX takes Zariski-open
sets of X to rings and inclusions to ring homomorphisms, such that the stalk of
OX over x

OX,x = colim
U3x

F (U)

is a local ring, called the localization of k[X] at x. Serre calls OX the sheaf of

42

local rings of X; in Hartshorne, OX is known as the sheaf of regular functions
on X. This definition is surprisingly subtle, so we will go through the idea a few
times. Also, since we are defining the sheaf by its sections (instead of through
some other process, cf. Example 4.15), we will need to check that it actually
satisfies the sheaf axioms.

In the language of regular functions : the localization of k[X] at x, i.e. the
stalk OX,x, is the ring of germs of regular functions at x, where a function is
regular at x if, in some open neighborhood W ⇢ U containing x, it is equal to
a quotient of polynomials p, q, with p, q 2 k[X] and q(w) 6= 0 for all w 2 W .
The particular quotient p/q is allowed to range over di↵erent open sets; i.e. a
fixed regular function or “local section” may be defined by multiple rational
functions over di↵erent open sets; they must only agree on their overlap. The
ring of regular functions OX(U) on U is the set of functions which are regular
at all x 2 U ; we say that such functions are regular on U .

Geometrically: by construction, a regular function on X is something like a
piecewise-rational function where the “pieces” are distinguished a�ne open sets
in X. Localization at x collapses all the regular functions which are equal on a
small-enough a�ne piece around x into a single germ at x—I have the image of
compressing many parallel fibers into a single thread (without any twisting, for
now). The set of such germs is a local ring because there is an obvious unique
maximal ideal that “sucks in” all the rest: the ideal of all polynomials that are
0 at x.

Intuitively, the local rings are the abstract carriers of the “geometry”, so
that as we zoom in from any open set U 3 x to the point x by following the
directed colimit, the ring structure of OX,x will recover the original geometric
picture of the zero-set of a bunch of polynomial equations. This is analogous to
the way that, as we zoom in to any point on a manifold, the smooth structure
of the manifold will recover the structure of Euclidean space. One can think
of the sheaf structure as a set of comprehensive instructions on how to zoom
in—just follow the restriction maps!

Algebraically: in short, recall that

• the vanishing ideal I(X) = all polynomials that are identically 0 on X,

• the coordinate ring k[X] ' k[x1, ..., xn]/I(X) = polynomial functions re-
stricted to X and identified by their images,

• the localization of k[X] at a multiplicative set S ⇢ k[X] is a new ring

k[X][S�1] := k[X]⇥ S/ ⇠

where (p, s) ⇠ (p0, s0) i↵ ps0 � p0s = 0.21

• for a given point x 2 X, the localization of k[X] at x is the localization of
k[X] at Q = {q 2 k[X] : q(x) 6= 0} = k[X] \mx, where mx is the maximal
ideal corresponding to x.

21
k[X] is an integral domain. More generally, we can localize any ring at S, for which we

require that (p, s) ⇠ (p0, s0) i↵ t(ps0 � p
0
s) = 0 for some t 2 S.

43

• The localization of k[X] at an open set U ⇢ X is the localization at
Q = {q 2 k[X] : 8x 2 U, q(x) 6= 0}. This is not always equal to OX(U),
see the next example.

Where X is an irreducible a�ne variety, k[X] is an integral domain, and the
localization S�1k[X] (also written as k[X][S�1]) is just the quotient field k(X),
called the function field of X.

Example 4.18. When U = Df is a basic open set in an a�ne variety X, then
OX(U) is the localization of k[X] at Df . But not every ring of regular functions
OX(U) arises as a localization. Suppose X = V(xz � yw), and let U ⇢ X be
the open subset of X where y 6= 0 or z 6= 0. Then the function x/y is defined
on the subset of U where y 6= 0, the function w/z is defined on the subset of U
where z 6= 0, and by the equation defining X, these functions are equal when
they are both defined.

y 6= 0 z 6= 0

U

x

y
= w

z

But there is no way to represent the two functions x/y and w/z as a single
quotient of polynomials in k[x, y, w, z] defined on all of U , even though they
both belong to the same germ in OX,p for p 2W = {p 2 X : y 6= 0 and z 6= 0}.

Categorically : the localization of k[X] at a multiplicative subset S is a new
ring k[X][S�1] in which all the elements of S become invertible, and which
is universal with respect to this property. In detail: consider the category of
k[X]-algebras (here, R-algebra means an R-module with an associate R-bilinear
operation with a multiplicative identity). First o↵, k[X] is itself a k[X]-algebra,
and for any k[X]-algebra A, there is a canonical homomorphism k[X] ! A
defined by p 7! p · 1. Second, for any multiplicative set S ⇢ k[X], there is a
subcategory of k[X]-algebras where we restrict to just those algebras A such
that, under the canonical homomorphism k[X]! A, every element of S is sent
to an invertible element in A. Then the localization of a ring k[X] at S is the
initial object in this special subcategory of k[X]-algebras.

Localization is important because it is a tool for basing algebraic constructs
within sheaf theory. I hope to come back to it in a later note on analogs of
localization in machine learning.

Lemma 4.19. For an a�ne variety X, OX is a sheaf.

Proof, version 1. Clearly OX is a presheaf, so we will check the sheaf axioms
directly.

44

Say that we have a set of regular functions {fi}i2I for all subsets Ui of a
cover of U such that they agree on all overlaps. Let f = (fi) be the function
defined by gluing them together in the obvious way. It is clearly regular on U ,
since the condition f = p/q is only enforced locally; i.e. it can be satisfied by
di↵erent p, q at di↵erent p 2 U . This proves (1).

Suppose that s, t : U ! k are regular functions that agree on all the open
sets Ui in a cover of U . Then by virtue of being a cover of U , they agree on all
U and thus belong to the same germ OX,x for all x 2 U . This proves (2).

Proof, version 2. OX is the sheafification of the presheaf of rational functions,
denoted O

0

X
and defined by

O
0

X
(U) = {f : U ! k : 9p, q 2 k[X], q(x) 6= 0, s.t. f(x) =

p(x)

q(x)
8x 2 U}.

O
0

X
is a presheaf and not a sheaf since not every ring of sections arises as the

localization of k[X] at U , as shown in Example 4.18.

Proof, version 3. The following is Serre’s original construction of OX .
Let k be a field, and let kn be the a�ne space of dimension n, endowed with

the Zariski topology. Pick x = (x1, ..., xn) 2 kn, and define the local ring of x,
Okn,x, in the usual way. These local rings define a subsheaf Okn of the sheaf
Fkn of germs of functions on kn with values in k (see Example 4.7).

Define a closed set in kn (i.e. an a�ne variety), and let FX be the sheaf of
germs of functions on X with values in k. For x 2 X, this defines a canonical
homomorphism on stalks,

✏x : Fkn,x ! FX,x.

The image of Okn,x under ✏x defines the stalks of a subsheaf of FX which we
denote FX . FX is obviously a sheaf. It remains to prove that its stalks are
isomorphic to the localization of the coordinate ring k[X] at x, i.e. OX,x. But
this follows directly from the fact that the kernel of ✏x is the ideal I(X) · Okn,x,
whose objects are just the regular functions that vanish on X.

The structure sheaf O, along with the closely related idea of ringed spaces,
is the basic data structure used by all of modern algebraic geometry.

Definition 4.20. A ringed space (X,S) is a set X along with an associated
sheaf of rings, S.

Example 4.21. An a�ne variety X with its structure sheaf OX forms a ringed
space, (X,OX).

In Question 17, I have already claimed that sheaves are designed for coho-
mology. Similarly, we will see that a ringed space can be thought of as a space
that comes with its own notion of cohomology.

Actual computations in sheaf theory require further manipulations of O,
namely subsheaves, direct image sheaves, quotient sheaves, and sheaves of OX -
modules. In particular, sheaves of OX -modules will play an important role in
defining the right sort of linear algebra over sheaves.

45

Definition 4.22. A sheaf of OX-modules is a sheaf F such that, for any U ⇢
X, F (U) is an OX -module such that the restriction maps F (U) ! F (V) are
compatible with the usual restriction maps in OX(U) ! OX(V) in the sense
that (fs)|V = f |V s|V for all f 2 F (U) and s 2 OX .

(I must admit that the multiplication here was a bit disorienting at first—if
algebra over k is a little like recording chess moves with the numbers of k, then
algebra over a sheaf is a bit like chess where pieces of the board are constantly
being added or subtracted.)

Example 4.23. An ideal sheaf I of OX is any sheaf of OX -submodules. In
particular, OX(U) ⌦ I(U) ⇢ I(U) for any open U , and I(U) is an ideal in
OX(U).

Example 4.24. For A a sheaf of rings and two sheaves of A-modules F,G, the
tensor product of F and G is a sheaf F ⌦A G defined on stalks by Fx ⌦Ax Gx.
If the stalks Ax are commutative, then the tensor product is also a sheaf of
A-modules.

I will hold o↵ on any further definitions for now. The point is that, in
reference to Question 17, OX reproduces the objects of classical algebraic ge-
ometry, e.g. coordinate rings (OX(X)), function fields (the sheaf of rational
functions22), and rational maps (morphisms of sheaves). See Table 4.1 for a
complete comparison. However, we have yet to reproduce “what sheaves are
for”—namely cohomology—in the language of classical algebraic geometry.

4.2 Good cohomology, part 1

Serre’s central motivation in FAC was the search for a good cohomology theory
for abstract varieties. For example, he cites as inspiration work by Kodaira
and Spencer generalizing the Riemann-Roch theorem over complex algebraic
curves to abstract varieties in the sense of Weil. There’s a lot to unpack in this
statement, so let me go through it slowly.

Consider the following very general problem: how can we read the topology
of a variety X in terms of the polynomials which define it? In dimension one,
this answer is just “by the number of roots”. In dimensions two (and higher),
the answer is essentially “by its genus.” This is the genius of Riemann-Roch.

In the original version by Riemann and his student Gustav Roch, Riemann-
Roch relates the genus23 of a compact Riemann surface S to the function the-
ory over (formal sums of) points of the surface. This should sound familiar—
remember that sheaf theory is all about constraining the function theory of a
space so that it can be reconstructed from the functions around points. Rie-
mann’s basic idea “begins by essentially creating the topological study of com-
pact oriented surfaces, attaching to each surface S an invariantly defined integer

22A piece of confusing notation; the name comes from the nLab. The sheaf of rational
functions should not to be confused with the presheaf of “globally rational functions” whose
sheafification is the sheaf of regular functions, a.k.a. the sheaf of “locally rational functions”.
Serre calls the sheaf of rational functions the sheaf of fields.

23I’ll only consider complex, non-singular projective curves in this section, so I won’t dis-
tinguish the topological, geometric, and arithmetic genus.

46

ge
om

et
ry

al
ge
b
ra

sh
ea
f

sc
h
em

e
a�

n
e
va
ri
et
y
X
⇢

k
n

co
or
d
in
at
e
ri
n
g
k
[X

]
gl
ob

al
se
ct
io
n
s
O

X
(X

)
a�

n
e
sc
h
em

e
S
p
ec

A
p
ol
yn

om
ia
l
fu
n
ct
io
n
X
!

k
k-
al
ge
b
ra

h
om

k
[Y

]
!

k
co
n
st
an

t
sh
ea
f
w
it
h
va
lu
e
k

p
ol
yn

om
ia
l
m
ap

X
!

Y
k-
al
ge
b
ra

h
om

k
[Y

]
!

k
[X

]
m
or
p
h
is
m

of
sh
ea
ve
s
O
(Y

)
!

O
(X

)
†
p
oi
nt

x
2
k
n

m
ax

im
al
s
id
ea
ls

m
x
2
S
p
ec
m
(k
[x

1
,.
..
,x

n
])

st
al
k
O

X
,x

fu
n
ct
or

of
p
oi
nt
s?

p
ro
je
ct
iv
e
va
ri
et
y
X

h
om

og
en
eo
u
s
co
or
d
in
at
e
ri
n
g
S
(X

)
fu
n
ct
io
n
fi
el
d
k
(X

)
f.
g.

fi
el
d
ex
te
n
si
on

of
k

sh
ea
f
of

ra
ti
on

al
fu
n
ct
io
n
s
K

X
lo
ca
l
ri
n
g
of

ge
n
er
ic

p
oi
nt

*
(d
om

in
an

t)
ra
ti
on

al
m
ap

X
!

Y
k-
al
ge
b
ra

h
om

k
(Y

)
!

k
(X

)
m
or
p
h
is
m

of
al
ge
b
ra
ic

va
ri
et
ie
s

m
or
p
h
is
m

of
sc
h
em

es
op

en
co
ve
ri
n
g
U

n
er
ve

or
C
ec
h
co
m
p
le
x
N
(U

)
C
ec
h
co
co
m
p
le
x

ét
al
e
sp
ac
e

gl
u
in
g?

li
n
ea
r
al
ge
b
ra

sh
ea
f
co
h
om

ol
og
y

ét
al
e
co
h
om

ol
og
y

a�
n
e
sp
ac
e
k
n

f.
d
.
ve
ct
or

sp
ac
e

co
h
er
en
t
sh
ea
ve
s

co
h
er
en
t
sh
ea
ve
s

ge
nu

s
of

a
cu
rv
e

ge
nu

s
of

a
nu

m
b
er

fi
el
d

H
1 W
ei
l(
X
,F

)
E
u
le
r-
P
oi
n
ca
ré

ch
ar
ac
te
ri
st
ic

R
ie
m
an

n
-R

oc
h

S
er
re

d
u
al
it
y

co
h
er
en
t
d
u
al
it
y

ge
om

et
ri
c
d
im

en
si
on

K
ru
ll
d
im

en
si
on

K
ru
ll
d
im

en
si
on

K
ru
ll
d
im

en
si
on

a
al
ge
b
ra
ic

sp
ac
es

R
in
g
!

S
et

p
re
sh
ea
ve
s
R
in
g
!

S
et

sh
ea
ve
s
R
in
g
!

S
et

fu
n
ct
or

of
p
oi
nt
s

T
ab

le
4.
1:

G
lo
ss
ar
y
of

al
ge
b
ra
ic

ge
om

et
ry
.
A
ll
va
ri
et
ie
s
ar
e
ir
re
d
u
ci
b
le
.
*
in
d
ic
at
es

an
eq
u
iv
al
en
ce

of
ca
te
go
ri
es
.
†
in
d
ic
at
es

a
b
ij
ec
ti
on

.

a
T
h
er
e
a
re

re
a
ll
y
th

re
e
ca

te
g
o
ri
es

in
th

e
fu
n
ct
o
r
o
f
p
o
in
ts

p
er
sp

ec
ti
ve

:
th

e
ca

te
g
o
ry

o
f
fu
n
ct
o
rs

fr
o
m

R
in

g
to

S
e
t,

th
e
su

b
ca

te
g
o
ry

o
f
sh

ea
v
es

w
it
h
in

th
is

ca
te
go

ry
,
a
n
d
fi
n
a
ll
y
th

e
fu
rt
h
er

su
b
ca

te
g
o
ry

o
f
a
lg
eb

ra
ic

sp
a
ce
s
w
it
h
in

th
e
ca

te
g
o
ry

o
f
sh

ea
v
es
.
B
a
se
d
o
n
a
co

m
m
en

t
o
f
J
a
m
es

B
o
rg
er

[5
6
],
w
e
ca

n
th

in
k
o
f
th

es
e
ca

te
g
o
ri
es

a
s
co

rr
es
p
o
n
d
in
g
to

se
t
th

eo
ry
,
to
p
o
lo
g
y,

a
n
d
g
eo

m
et
ry
.

2g, the minimal number of simple closed curves Cj on S needed to make the
complement S0 of their union simply connected” [27, pg. 836]. (Of course 2g is
just the first Betti number, i.e. the dimension of H1(S,C).) This led Riemann,
after some analytic arguments, to consider the field of rational functions over S,
as he observed that the genus g was invariant under birational transformations
of curves.

It’s hard to overstate how important Riemann’s observation was to the de-
velopment of algebraic geometry. Besides leading directly to the Riemann-Roch
theorem and later to the Riemann-Hurwitz formula, Riemann also considered
parameterizations of the algebraic curves of a fixed genus, which would lead to
the modern theory of moduli spaces of curves. The use of genus as an birational
invariant introduced an extremely fruitful model for importing other topolog-
ical ideas into geometry, later culminating in the development of homological
algebra.

Before stating the Riemann-Roch theorem, I should refresh an important
concept from commutative algebra. We know what an ideal of a ring is. In
particular, ideals of the coordinate ring correspond to sets of finite points of an
a�ne variety. A divisor can be thought of as an ideal “considered along with
the point at infinity”, since they account for the additional data at singularities.
Suppose K is a finite extension of the field C(x) of rational functions in one
variable over C. Riemann’s observation tells us that K corresponds to a class of
Riemann surfaces. Then a divisor D on K is a formal sum a1x1 + ...+ anxn of
a finite set of points of X with integer coe�cients, and the set of divisors D(K)
of K is an additive group isomorphic to ZX . The degree of a divisor, deg(D),
is the sum

nX

i=1

ai

and the support of D is the set of xi 2 X such that ai 6= 0. D is positive if
ai � 0 for all ai, and negative if ai 0 for all ai.

A divisor D on K can be taken to represent a finite set of zeroes and poles
of order a1, ..., an at prescribed points x1, ..., xn (on a compact Riemann surface
X with function field K). In particular, a principal divisor on K is a divisor of
the form

(f) =
X

x2X

vx(f)x

where f is a meromorphic function and

vx(f) =

(
a x is a zero of order a

�a x is a pole of order a

The principal divisors on K form a subgroup of D(K). Two divisors that di↵er
by the addition of a principal divisor are called linearly equivalent ; in particular
deg(D) = deg(D0) if D is linearly equivalent to D0. In addition, for any surface
there is a canonical divisor � = (@) of a nonzero meromorphic 1-form @ on the

48

surface; this is canonical since any two nonzero meromorphic 1-forms will yield
linearly equivalent divisors.

In Riemann-Roch, the notion of divisor represents not a particular set of
zeroes and poles but a class of constraints on the topology. The divisor and
degree of a divisor form one sort of “computational” interface between the local
data at points and the global invariant, the genus. Suppose D =

P
aixi, not

necessarily a principal divisor. Riemann found that if degD =
P

ai � g + 1,
then there exist rational functions on X with poles of order ai for any set of
points xi 2 X. Alternately, if

P
ai g, then such rational functions exist

only for a set of special points, i.e. only for particular divisors D with those
coe�cients. (To avoid confusion: here the positive coe�cients ai of D control
the order of the poles while the negative ones control the zeroes; see below.)
The result is an application of Riemann-Roch; to state it, we first use D to
define a complex vector subspace L(D) ⇢ K of rational functions f 2 K on X
such that

(f) +D � 0.

Explicitly, this means that f 2 L(D) is a rational function with poles of order
at most ai (if ai is positive) and zeroes of order at least �ai (if �ai is negative).
Let `(D) be the dimension of L(D). Then:

Theorem 4.25 (Riemann-Roch for compact Riemann surfaces). For a compact
Riemann surface of genus g with canonical divisor �,

`(D)� `(��D) = deg(D)� g + 1.

If D is a principal divisor (in particular, if it is the principal divisor for a
rational function), then `(��D) is 0. Then if degD � g+1, the theorem implies
that `(D) � 2. SupposingD is non-zero, then L(D) always contains the constant
functions (which occupy the first dimension), and saying that L(D) � 2 means
that it contains a non-constant rational function with the prescribed poles (and
no zeroes). Since we showed this using only the degree of D, such a rational
function exists for any set of points on the surface.

The classical Riemann-Roch is stated for compact Riemann surfaces, which
are equivalent to non-singular projective curves over C.24 To generalize to curves
over arbitrary fields (still algebraically-closed), we need to shift away from the
language of meromorphic functions over C to the general theory of rational
functions over k. Just to reiterate, there are two things going on here:

(1) a change of base field from C to some other algebraically-closed field, e.g.
the field of algebraic numbers, and25

(2) a change in language from meromorphic functions to rational functions—
in particular, from analytic theorems about di↵erential forms and abelian
integrals to homological theorems about cycles and the dimensions of cer-
tain cohomology theories.

24Essentially, we want non-singular because it allows us to use Poincaré duality. We want
projective because these correspond to the “compact” cases of varieties.

25What can we model, in machine learning, as a change of basis?

49

In my initial hypothesis for Question 16, I claimed that category theory, ex-
tended by sheaf theory, allowed us to co-evolve the computational abstraction
in tandem with the particular (topological) axiomatization. Concretely, chang-
ing the computational abstraction corresponds to (2) and is elegantly captured
in the idea of a morphism of (often, exact sequence of) sheaves, while changing
the topological axiomatization corresponds to (1) and can be formalized via the
base change functor. Both historically and substantively, the Riemann-Roch
theorem gives us evidence of a correspondence between (1) and (2).

Note that there is also a third, separate aspect:

(3) a transformation of spaces, e.g. from X to its (open) subsets, especially
when modeling a gluing.

I have tried to work out the motivation for (1) in Section 4.7, but, to be frank,
I still do not completely understand the reason for (2). I have not worked out
the specifics of Riemann’s proof of Riemann-Roch, so it’s hard for me to see the
precise analytic arguments cohomology is replacing. Indeed, almost all modern
introductions to Riemann-Roch feature the homological version, di↵ering only
in the amount of analytic versus homological material (e.g. compare Serre’s
to Vakil’s to Hartshorne’s). For me, the more analytic versions seem more
elementary, and give the essential flavor of sheaf cohomology. The following is
from Vakil [114].

Theorem 4.26 (Riemann-Roch, homological version). For C a non-singular
projective curve over an algebraically-closed field, k, and L an invertible sheaf
of degree d on C, then

h0(C,L)� h0(C,⌦1
C
⌦ L

_) = d� h1(C,OC) + 1,

where L
_ is the monoidal dual to L and ⌦1

C
is the cotangent sheaf of C. h0, h1

correspond to the dimensions of their respective cohomology groups.

I leave the statement of the theorem “on the board” here as motivation. The
key to the theorem, as well as to a vast range of later generalizations of Riemann-
Roch26 to higher dimensions and to arbitrary fields, is the cohomology over
sheaves, and in particular Serre duality, which is an analog of Poincaré duality
(Hi(X) ' Hn�i(X)) for sheaf cohomology and perhaps the key technical result
coming out of FAC.

26E.g. Hirzebruch-Riemann-Roch and Grothendieck-Riemann-Roch. Note how Toen (in
lecture) notes the distinction between topological and algebraic invariants on the two sides of
the Hodge decomposition in H-R-R: Hi(X,Q)⌦C '

L
p+q=i H

i(X,⌦q
X), as well as on the two

sides of the étale `-adic cohomology, Hi
et(X,Q`) ' sheaf cohomology for the Zariski topology.

An additional example comes from Kodaira, who lifted the work in terms of divisors into the
language of line bundles and the Hodge theory of harmonic forms (itself a modernization of
the analytic arguments used by Riemann to characterize the genus as a birational invariant),
obtaining a Riemann-Roch formula for compact Kähler manifolds. In particular, the Kodaira
embedding theorem (1954) characterizes non-singular, complex projective curves as the class
of compact Kähler manifolds endowed with a kind of cohomological invariant called a Hodge

metric. If I want to learn more Hodge theory, this would be an interesting place to start.

50

To understand the homological translation of Riemann-Roch and to prove
Serre duality, we will need two ingredients: sheaf cohomology for “linearizing”
the function space of an algebraic variety, and coherent algebraic sheaves, the
sheaf-theoretic analog of finite-dimensional vector spaces.

4.3 A very brief review of sheaf cohomology

In this section, I will develop the preliminaries of sheaf cohomology via Cech
cohomology, an approximation of sheaf cohomology based on finite coverings,
roughly analogous to the simplicial division we use in algebraic topology.

Let U = {Ui}i2I be an open covering of X. If (i0, ..., ip) is a finite sequence
of elements of I, we put

Ui0...ip = Ui0 \ ... \ Uip .

From algebraic topology, recall that the nerve (or Cech complex) of a covering
U = {Ui}i2I is the abstract simplicial complex N (U) with vertex set I, where
a family {i0, ..., ip} spans a p-simplex � if and only if Ui0 \ · · · \ Uip 6= Ø. In
that case, we say that Ui0 \ · · · \ Uip is the support of �. Let Kp(I) be the free
group generated by the set of p-simplexes. The boundary map in the simplicial
complex is the usual @ : Kp+1(I)! Kp is defined by the formula

@(i0, ..., ip+1 =
p+1X

j=0

(�1)j(i0, ..., îj , ..., ip+1)

where, as always, îj means that the term ij should be removed from the se-
quence.

The following definitions are from Serre.

Definition 4.27. Let F be a sheaf of abelian groups onX. If p is an integer � 0,
we call a Cech p-cochain of U to be a “function” (note the variable codomain)

f : Kp(I)! F (Ui0...ip)

(i0, ..., ip) 7! fi0...ip

where Kp(I) denotes the chains of dimension p.

Definition 4.28. Given any sheaf of abelian groups F , the p-th Cech cochain
group of U over F is the product

Cp

Cech(U, F) =
Y

i0<...<ip

F (Ui0 \ · · · \ Uip)

where the product on the right is over all sequences (i0, ..., ip) of length p+ 1.
We denote by CCech(U, F) the family of all Cp

Cech(U, F) for p = 0, 1,

51

U1

U2 U3

N
�!

•

• •

{1}

{2} {3}

{1, 3}{1, 2}

{2, 3}

{1, 2, 3}

f

�!

•

f1

•

f2

•

f3

f13

f123

Ui0 \ · · · \ Uip 7�! {i0, ..., ip} 7�! fi0...ip

Intuitively, the Cech cohomology of the covering U with values in a sheaf F
should be the simplicial cohomology on the nerve N (U) where one makes the
obvious replacement of “functions” f with variable codomain in place of func-
tions with a fixed codomain. In particular, the boundary map in the simplicial
complex induces a coboundary map between the Cech cochain groups defined
by the following rule:

� : Cp

Cech
(U, F)! Cp+1

Cech
(U, F)

f 7!
p+1X

j=0

(�1)j⇢j(fi0...̂ij ...ip+1
)

where ⇢j denotes the restriction homomorphism

⇢j : F (U
i0...̂ij ...ip+1

)! F (Ui0...ip+1).

What is really going on? Ultimately, it comes down to the restriction homo-
morphisms. Each (p+1)-simplex {i0, ..., ip+1} has p+2 ‘faces’ {i0...̂ij ...ip+1} ob-
tained by deleting one of the coordinates ij . Each face has support U

i0...̂ij ...ip+1
,

whose union Ui0...ip+1 is the entire support of {i0, ..., ip+1}, and therefore any
element of F (U

i0...̂ij ...ip+1
) can be restricted to an element of F (Ui0...ip+1).

Since @ � @ = 0, we have � � � = 0. Thus � makes CCech(U, F) into a cochain
complex called the Cech cochain complex. We call the homology of this cochain
complex its Cech cohomology

Hp

Cech
(U, F) =

ker �p

im �p�1
.

Example 4.29. The following is a very typical example (e.g. Example 4.0.4 in
Hartshorne).

Let S1 be the circle with its usual topology, and let ZS1 be the constant sheaf
with value Z. Let U be the open covering by two connected open semi-circles
U, V which overlap at each end.

Then
C0

Cech
(U,ZS1) = ZS1(U)⇥ ZS1(U) = Z⇥ Z

52

C1
Cech

= ZS1(U \ V) = Z⇥ Z.

Note that ZS1 already “knows” the fact that U\V is disconnected in the second
equality.

The map �0 : C0
Cech

! C1
Cech

takes (a, b) to (a� b, a� b). Then

H0
Cech

(U,Z) = ker �0 = {(a, a) 2 Z⇥ Z ' Z,

and

H1
Cech

(U,Z) = C1

im �0
=

Z⇥ Z
{(a� b, a� b) 2 Z⇥ Z} '

Z⇥ Z
Z ' Z,

as expected.

Proposition 4.30. H0
Cech

(U, F) = F (X).

Proof. A 0-cochain is a system of sections (fi)i2I with every fi being a section
of F (Ui). It is a cocycle if and only if it satisfies fi � fj = 0 over Ui \ Uj , or
in other words if there is a section f of F on X coinciding with fi on Ui for all
i 2 I.

Based on the proposition above, we can directly define the 0-th sheaf coho-
mology group H0

Sh(X,F) of a topological space X in terms of the global sections
functor on X, since H0

Cech
(U, F) = F (X) is independent of the choice of open

covering U of X. For the higher cohomology of X, this is not always true.
To define the sheaf cohomology of X more generally, we have two options:

1. by a theorem of Serre, Hp

Cech
(U, F) ' Hp

Sh(X,F) on a su�ciently nice
spaceX (paracompact and Hausdor↵) whenever U is a good cover (all open
sets and finite intersections of open sets are contractible). Unfortunately,
the Zariski topology is not Haudor↵.

2. More generally, define Hp(X,F) as the colimit of groups Hp(U, F), where
the colimit is taken over finer and finer refinements of coverings of X.

Following Serre, we will take the second approach.

Definition 4.31. A covering U = {Ui}i2I is said to be finer than the covering
V = {Vj}j2J , denoted U � V, if there exists mapping ⌧ : I ! J such that
Ui ⇢ V⌧(i) for all i 2 I. This defines a preorder between coverings of X.

Lemma 4.32. The finer-than relation U � V defines a directed preorder on the
set of coverings of X.

Suppose U � V. If f is a p-cochain, put

(⌧f)i0,...,ip = ⇢V
U
(f⌧(i0)...⌧(ip))

where ⇢V
U

denotes the restriction homomorphism defined by the inclusion of
Ui0...ip in V⌧(i0)...⌧(ip). The mapping f 7! ⌧f is a homomorphism from Cp

Cech
(V, F)

53

to Cp(U, F) defined for all p � 0 and commuting with �, thus it also defines a
homomorphism on homology

� : Hp

Cech
(V, F)! Hp

Cech
(U, F)

By a proposition of Serre, we know that the homomorphism � depends only
on U and V, not on the choice of ⌧ .

Definition 4.33. The p-th cohomology group of X with values in a sheaf F is
given by

Hp

Sh(X,F) = colim
�

Hp

Cech
(U, F)

where the colimit is defined over (the directed system of maps � generated by)
the directed preorder of coverings U of X.

We have defined the sheaf cohomology groups of X, but we are far from
done—we need to check that various tools like long exact sequences, connecting
morphisms, and homotopy invariance actually exist for Hq

Sh(X,F), turning the
functor H into a full-fledged cohomology theory.27 Nor have we seen the very
elegant application of sheaf cohomology to the familiar cohomology of mani-
folds, e.g. de Rham and singular cohomology (the upshot: there’s an incredible
amount of structure hidden in just the constant sheaf RX over a smooth mani-
fold). We will return to these aspects later.

4.4 Coherent algebraic sheaves

Coherent algebraic sheaves take the role of finite-dimensional vector spaces in
sheaf cohomology. In this section, I will give the definitions for Serre’s sheaf of
relations, coherent sheaves, and algebraic sheaves, and conclude with the main
result for a�ne varieties.

First, some preliminaries.

1. For a continuous map : X ! Y and F a sheaf on X, the direct image
sheaf ⇤F is a sheaf on Y given by ⇤F (U) = F (�1(U)).

2. Given a two sheaves F,G on X with values in the same category, a mor-
phism of sheaves � : F ! G is just a natural transformation of presheaves
that is compatible with the restriction maps. In other words, the following
diagram commutes:

F (U)
�U //

rV,U

✏✏

G(U)

rV,U

✏✏
F (V)

�U // G(V)

3. A morphism of ringed spaces f : (X,F) ! (Y,G) is a continuous map
f : X ! Y together with a morphism of sheaves, f⇤ : G! f⇤F .

27In practice, people do not usually prove these properties directly, since they drop out
almost automatically from the derived functor definition of (sheaf) cohomology.

54

Definition 4.34. Let F be a sheaf of A-modules, and let s1, ..., sp be sections
of F over an open U ⇢ X. If we assign to any family of germs f1, ..., fp in Ax

the element
pX

i=1

fi · si(x) 2 Fx

we obtain a homomorphism � : Ap
! F defined over U (being precise, � is a

fixed homomorphism from Ap(U) to F (U)). The kernel ker� = R(s1, ..., sp) is
a subsheaf of Ap called the sheaf of relations between the si.

A sheaf of relations R(s1, ..., sp) is essentially the sheaf-theoretic version of
V(I), i.e. an operation that cuts out an a�ne variety using some algebraic data.

The following definition is adapted from Serre:

Definition 4.35. A sheaf F of A-modules over X is coherent if it is:

1. finitely generated or of finite type, i.e. each F (U) is generated (under
multiplication by elements of A(U)) by a finite number of sections,

2. if s1, ..., sp are sections of F over an open subset U ⇢ X, then the sheaf
of relations between the si, restricted to U , is also of finite type

Roughly, the first condition corresponds to the fact that X has some finite
covering by a�ne opens, while the second condition corresponds to the require-
ment that, over any open set U , the set of polynomials that vanish over U is
finitely-generated (i.e. every a�ne variety is cut out by finitely-many polyno-
mials). The dimension over k of F (U) is exactly the number of polynomials
needed to generate U .

By comparison, Hartshorne defines a coherent sheaf as a quasi-coherent sheaf
that is “finitely presented” with respect to a cover. Unfortunately, the definition
in Hartshorne is quite convoluted and hard to work with (perhaps because he
was defining it in the more general case, for schemes), so let me give the nLab’s
version: a quasi-coherent sheaf is a sheaf of A-modules that is locally presentable
on some cover {Ui}, in the sense that for every i there exists an exact sequence
of sheaves

AIi |Ui

T
! AJi |Ui ! F |Ui ! 0.

The middle arrow is surjective, so we can think of each F |Ui(Uj) as the cokernel
of T , i.e. a map between free modules. I like to think in terms of vector spaces,
so I imagine F |Ui(Uj) as the cokernel of a linear transformation T between two
fixed vector spaces. Note that these are fixed by i, not by j. So F |Ui really
represents a class of vector spaces, all of which are fixed by two “dimensionality”
parameters: the cardinality of Ii and Ji. When Ii and Ji are finite, we say that
the sheaf is coherent. So coherent sheaves are, roughly, analogous to finite-
dimensional vector spaces.28

28Several authors claim that one can very well use quasi-coherent sheaves in place of coherent
sheaves even in the sheaf cohomology of a�ne varieties, but Serre does not develop this fact
in FAC.

55

Of course, in algebraic topology we don’t always or even usually take our
(co)homology coe�cients in a field, so there’s no special reason to expect our
“coe�cients in a sheaf” to look like finite-dimensional vector spaces. And in-
deed, the situation is generalized when we move to schemes defined over arbi-
trary rings.

Finally:

Definition 4.36. Suppose X is an a�ne variety with its sheaf of local rings OX

(so a ringed space). We call an algebraic sheaf on X any sheaf of OX -modules.

An algebraic sheaf F over X is said to be coherent if it is a coherent sheaf
of OX -modules. In particular, the cohomology groups of X with values in a
coherent algebraic sheaf F will be finite-dimensional vector spaces over k.

Proposition 4.37. The sheaf of regular functions OX on an a�ne variety X
over k is a coherent algebraic sheaf.

Proof. Essentially, consider OX as a sheaf of modules over itself, and note that
the module of “relations between polynomials”, with elements of the form gifi =
0, is finitely generated, since the underlying polynomial ring is Noetherian. The
full proof is in FAC, §37.

Proposition 4.38. Let X be an a�ne variety, {qi} a family of regular functions
on X that do not vanish simultaneously, and U the open covering of X consisting
of Xqi = Ui. If F is a coherent algebraic subsheaf of Op

X
, then Hk

Cech
(U, F) = 0

for all k > 0.

Intuitively, this makes sense. If we’re covering a�ne varieties by other a�ne
opens, then we would expect that the only obstruction would be at the level of
connected components, i.e. in H0

Cech
(U, F).29 The proposition gestures toward

the following fact: a (quasi-)projective variety is really just a gluing of local
a�ne pieces. The OX -module structure both tracks and linearizes the data of
these pieces on overlaps. We expect that, when restricting to the a�ne pieces,
to find only trivial higher cohomology, since they are the elements of our “good
covering”, and the proposition above verifies our intuition. To see a proof of
Serre duality, we need to apply sheaf cohomology to projective and abstract
varieties.

4.5 Serre duality

An algebraic variety over k or an abstract k-variety in the sense of Serre is a
topological space X and a sheaf O of germs of mappings from X to k, which is
additionally

29The truly striking thing about the proposition is not its proof, which is straightforward
once all of the machinery is set up, but the very idea that one could apply coherent sheaves,
which had been used to work with the topology of complex manifolds, to the relative paucity
of the Zariski topology on a�ne varieties. Nowadays we take it for granted that sheaves work
on the Zariski topology; earlier, I referenced sheaf theory as a tool designed to work on such
topologies.

56

1. a prealgebraic variety, i.e. X has a finite open covering U = {Ui}i2I such
that each (Ui,O) is isomorphic (via a morphism of ringed spaces) to an
a�ne variety Vi with its structure sheaf.

2. separated, i.e. the image of the diagonal X ! X ⇥X is closed in X ⇥X.

Example 4.39. Both a�ne varieties and projective varieties are examples of
algebraic varieties. In particular, the projective space Pr(k) of dimension r over
k is an algebraic variety. This is important, since sheaf cohomology on any
projective algebraic variety can be reduced to sheaf cohomology on Pr(k).

The fact that k is a field makes (pre)algebraic varieties into ringed spaces.
The first condition is the ringed-space analogue to the usual way we define the
Zariski topology and structure sheaf. The second condition is analogous to the
Hausdor↵ (T2) separation axiom [110, pg. 68] and guarantees our ability to
glue subvarieties of X into new varieties.

While I will review a proof of Serre duality (for curves) here, following FAC,
[97], and [114], I would also like to illustrate the following point: the ringed
space, sheaf-theoretic definition of algebraic varieties “comes with” the appro-
priate notion of cohomology as embedded in the definition of the structure sheaf.

First, we observe the behavior of (non-coherent) sheaf cohomology on curves.
The following is Proposition 4 in §53 of FAC.

Proposition 4.40. If C is an irreducible algebraic curve and F is an arbitrary
sheaf in C, we have Hn(C,F) = 0 for n � 2.

Proof. The proof leans heavily on the fact that the closed subsets of C which
are not C itself are finite. For a finite subset S and a point x 2 S, we define
Ux = (C � S) [{x}; the family {Ux}x2S forms an finite open covering US of
C. We will take the following lemma as a fact: coverings of the type US can be
made arbitrarily fine, by varying S.

Now take any sheaf F , and set W = C�S. It is clear that Ux0\...\Uxn = W
for distinct xi if n � 1. If we put G = F(W), it follows that the alternating
complex C 0(US ,F) is isomorphic, in dimensions � 1, to C 0(�(S), G), where
�(S) denotes the simplex with S for its set of vertices. Since Hn(�(S),F) = 0
by Proposition 4.38, it follows that Hn

Cech
(VS ,F) = Hn(�(S), G) = 0 for

n � 2.

The analogous vanishing theorem for n-dimensional varieties was proved by
Grothendieck some years after FAC. Since we will only develop, for now, in the
case of Serre duality for curves, we will not need those results.

The following version is adapted from [114] (itself adapted from [97]).

Theorem 4.41 (Serre duality for curves). Let C be a non-singular projective
curve, let L be an invertible sheaf with dual L_, and let ⌦1

C
= ⌦1 be the invertible

sheaf of di↵erential forms on C. There is a natural perfect pairing H0(C,⌦1
⌦

L
_)⇥H1(C,L)! k̄. Hence h1(C,L) = h0(C,⌦1

⌦ L
_).

57

Assuming Serre duality, the proof of Riemann-Roch then proceeds as follows.
Recall that genus g of C is defined as g = h0(C,⌦1).

h0(C,L)� h0(C,⌦1
⌦ L

_) = h0(C,L)� h1(C,L) (Serre duality)

= �(C,L)

= d+ �(C,OC) (L invertible of deg d)

= d+ h0(C,OC)� h1(C,OC)

= d+ 1� h0(C,⌦1) (“analytic facts”)

= d+ 1� g.

Proof of Serre duality. We begin by noting some facts about Serre’s twisted
sheaf OC(m) = O(m), a basic construction for talking about homogeneous
polynomials (i.e. the set of global sections of O(m) on projective space is pre-
cisely the vector space of homogeneous polynomials of degree m; an element
of the stalk O(m)x is a rational function P/Q homogeneous polynomials, with
degP � deg q = m).

First, for a given algebraic sheaf F defined on projective space Pr(k), the
twisted sheaf F(m) is defined by F(m) := F⌦OO(n). (There is a more involved,
elementary definition in terms of gluings of sheaves, but this is su�cient for our
purposes.)

Second, every twisted sheaf is invertible. Recall that a sheaf L is invertible
if it is a coherent sheaf of OC-modules for which there is an inverse sheaf T
such that L ⌦ T = 1, the monoidal unit. Invertible sheaves are the sheaf-
theoretic version of line bundles. Recalling our discussion of Riemann-Roch,
an invertible sheaf L corresponds to the old notion of divisor, and the degree
d of an invertible sheaf corresponds to the degree of a divisor. It is calculated
by deg(L) = �(C,L) � �(C,OC), where �(X,F) =

P
(�1)i dimk Hi(X,F) is

(homological) Euler characteristic.
Third, every invertible sheaf L is of the form OC(p1+ ...+pa�q1� ...�qb) =

O(D) for some divisor D, where degL = a� b. This result is from [114], but I
can’t find a proof anywhere.

Lastly, any coherent algebraic sheaf F is generated by global sections after
enough “twists”. (This is Theorem 2 in §66 of FAC, which Serre proves by
taking a long detour through the theory of graded R-modules of finite type.)
That is, there is some number m0 such that for all m � m0, the twisted sheaf
F(m) is generated by a finite number of global sections.

Let D be a divisor on C, and consider the sheaf O(D). We will first re-
interpret I(D) := H1(C,O(D)) in the language of repartitions (also known as
adeles). A repartition R is an indexed set {rP }P2C where rP is an element of
the function field k(C), and rP 2 OP (P) for all but finitely many P . Note that
R is a k(C)-algebra.

Then I(D) ' R

R(D)+k(C) . Missing parts: (1) complete the proof of Serre
duality; I am having some trouble understanding the later parts of the proof in
[114], in terms of repartitions. I’ll try looking through Serre’s proof in [97]. (2)
additional arguments as to why we should think of ringed spaces as “coming

58

with a cohomology theory”. (3) additional review/example of deriving the long
exact sequences for sheaves.

Add here: additional discussion of the di↵erence / connection between topo-
logical and algebraic invariants. What Riemann-Roch sets up later, e.g.... How
Toen (in lecture) notes the distinction between topological and algebraic invari-
ants on the two sides of the Hodge decomposition in H-R-R:

Hi(X,Q)⌦ C '
M

p+q=i

Hi(X,⌦q

X
),

as well as on the two sides of the étale `-adic cohomology, Hi

et
(X,Q`) ' sheaf

cohomology for the Zariski topology.
Maybe hint at non-commutative geometry by giving the definition of a non-

commutative variety:

Definition 4.42. A non-commutative variety over some base commutative ring
k is a k-linear (dg-)category.

For example, if A is a k-algebra, then D(A) is the dg-category of complexes
of A-modules.

For example, schemes over k, which is the same thing as above where one
adds the sheaf gluing.

The point of all this is, and why it might be important for us, is that even
without geometric things like open sets, topology, we can still define algebraic
things like di↵erential forms (via Hochschild homology) and topological things
like `-adic cohomology using (co)homology.

4.6 Good cohomology, part 2

Using sheaf cohomology, one can extend Riemann-Roch to non-singular projec-
tive varieties of arbitrary dimension, over an arbitrary field k. But just saying
that sheaf cohomology allowed one to generalize Riemann-Roch doesn’t quite
capture what algebraic geometers mean by “a good cohomology theory for ab-
stract varieties”, nor does it do justice to Serre’s motivation for developing sheaf
cohomology. There are three interpretations of good cohomology, which I’ve la-
beled as “the one from topology”, “the one from number theory”, and “the one
from scheme theory”, the last of which is really a synthesis of the interpretations
from topology and number theory.

From topology. Sheaf cohomology, in the first place, is modeled on classi-
cal cohomology theories in topology. So there should be a good way to handle
“algebraic cycles”—higher co-dimension generalizations of divisors—as if they
were cycles in the topological sense. There should be a good notion of what
gluing two varieties does to their cohomology, e.g. something like excision and
Mayer-Vietoris as in the singular case. Developments down this line include
Grothendieck’s étale cohomology, which uses the topology of the étale space to

59

define coherent analogues of genus for schemes, Sullivan’s elaboration of local-
ization for geometric topology, and Voevodsky and Morel’s A1-homotopy theory
for schemes, which begins by trying to make the a�ne line A1 behave more like
the topological interval used in the definition of homotopy. In general, “good”
cohomology is an organizing principle that seeks to make the rigid geometry of
polynomial functions softer and more topological.

From number theory. From another direction entirely came the remarkable
observations by F. K. Schmidt and Weil relating Riemann-Roch to number
theory, e.g. to “abstract Riemann surfaces” defined over finite fields. The Weil
conjectures, which Weil developed to solidify the link between number theory
to algebraic geometry, motivated much of the work by Serre and Grothendieck
from 1955-1960. They state that certain, extremely hard facts about number
fields—e.g. regularity results about nonlinear phenomena like the zeta function
⇣(s)—can be decomposed and “linearized”, via Weil cohomology, in terms of
the function field of the appropriate finite field. Good cohomology, in the sense
of Weil cohomology, was formulated as precisely the kind of cohomology theory
that would provide a witness to and a resolution of the Weil conjectures.

I will come back to the Weil conjectures in Section 4.7.
From scheme theory. The view from topology, while giving the right motiva-

tion, abstracts over certain basic, geometric facts about polynomials, facts which
(with the benefit of hindsight) were necessary for the development of a number-
theoretic interpretation of polynomials or, more accurately, a polynomial-theoretic
interpretation of numbers. Scheme theory lifts those geometric facts to the level
of cohomology, in the process o↵ering a entirely new perspective of what a
polynomial function “really” is.

Classically, a polynomial function is like the long handle of a sledgehammer—
rigid, easy-to-grasp, and attached to a blunt but powerful tool: the geometric
shape defined by its null set. The Nullstellensatz lets us grasp and swing the
hammer as an object in its own right, rather than always and awkwardly as the
combination of a handle and a hammer head. It tells us that, in the a�ne case,
isomorphism of coordinate rings (counted by equalities of polynomials) corre-
sponds to equality of shapes. For example, the a�ne algebraic curve defined by
y2 = x3

� x is a geometric shape

with two coordinate functions: y, which returns the y value of any point on the
curve, and x, which returns the x value of any point on the curve. This generates
the coordinate ring of y2 = x3

�x, under the constraint that functions generated
by the coordinate functions, e.g. y2 + x and x3, are identified when they are
equal on the curve. The structure of the coordinate ring determines the shape

60

of the variety. Algebraic properties of the coordinate ring correspond directly to
geometric properties of the shape; for instance, the ring of coordinate functions
has unique factorization precisely when every line bundle over the shape looks
the same as every other.

In light of scheme theory, sheaves became useful in algebraic geometry be-
cause the Nullstellensatz was incapable of distinguishing singular varieties over
arbitrary rings or even over Q. Recall that the Nullstellensatz for a�ne varieties
can be condensed into the following set of (order-reversing) bijections:

a�ne varieties in kn $ radical ideals in R = k[x1, ..., xn]

irreducible varieties in kn $ prime ideals in R

points in kn $ maximal ideals in R

where, importantly, k is an algebraically-closed field. As we know, ideals over-
generate varieties even when k is algebraically closed: for example, the ideals
(x2) and (x) both specify the same variety in C. The Nullstellensatz solved this
problem by passing to radical ideals; di↵erent radical ideals specify di↵erent
varieties. Unfortunately, passing from an ideal to its radical creates its own
problems. In particular, it does not preserve the local information about mul-
tiplicities at potential singularities, e.g. (x) has a 0 of multiplicity 1 while (x2)
has a 0 of multiplicity 2 at the origin.

What happens if k is not algebraically closed? Take k = R. Then V(I) = Ø
for some I (k[x1, ..., xn], in that we have situations like I(V(x2 + 1)) =
(1) 6= (x2 + 1). So the bijection between varieties over kn and radical ideals
in k[x1, ..., xn] fails in R; in fact, each bijection above fails. More basically,
when k is not algebraically closed, or when k is a ring, we will not see or dis-
tinguish all the possible zeroes (counting multiplicity). This can be seen in
Bezout’s theorem: two generic plane algebraic curves in projective space have
intersection of size at most the product of their degrees (counting multiplicity
and intersections at infinity), with equality if they are defined over an alge-
braically closed field. What is missing from the picture over R or some other
number field is the information about the multiplicity, i.e. the topology at that
point.

Enter sheaves. The first real evidence that we need sheaves of rings instead
of just rings arises in the need to record these multiplicities, i.e. in the need to
record which functions are not regular (i.e. blow-up) at x. In scheme theory,
this accounting is done automatically when one localizes over ideals ⇠ Zariski-
open sets in SpecA. The machinery of sheaf cohomology then churns this data
back into a topological invariant, e.g. generalizations of genus for varieties over
fields that are not C.

To go back to the hammer analogy: the sheaf is an additional piece of data
that measures the impact of the hammer on a given “test surface”, represented
by the particular field or ring k. It is, in fact, exactly the geometric data, that
says X is not just any topological space but is in fact a variety. I like to think
of a sheaf as something broadly similar to the Nullstellensatz: as the series of
adjustments that one makes when handling a hammer, as a way of adapting to

61

its weight and the way it strikes the surface.

4.7 The Weil conjectures

In Question 17, I o↵ered a hypothesis of what sheaves are for—cohomology—and
asked for an explanation of that hypothesis in the language of classical algebraic
geometry. In Section 4.2, I formed an explanation that began with the classical
versions of Riemann-Roch and genus, and then showed how sheaf cohomology
facilitated extensions of Riemann-Roch to arbitrary fields (still algebraically-
closed). In Sections 4.3-4.5, I reviewed the cohomological machinery needed
to prove this result, up to Serre duality. In Section 4.6, I then stated that a
good cohomology theory (in algebraic geometry) was something that imitated
cohomology theories in algebraic topology, and that this meant, for the purposes
of number theory, that it ought to be a cohomological witness to the Weil
conjectures. In this last section, I explain what it means for a cohomology
theory to witness the Weil conjectures, and how the Weil conjectures relate
back to my characterization of category theory as a “computational” lens on
algebraic geometry.

The goal of this section is not to review the Weil conjectures and Weil
cohomology in full, which is done in far better detail in [87], [23], and in the
appendix of Hartshrone. The goal to answer the following question:

Question 18. Why should we care about solutions V(I) over Q and Fq if all
the information already lives in C? Why does it matter that we can change the
base field, much less that we can change it to something finite?

If the import of Question 18 is not clear from Galois theory, consider that it
is also closely related to the following question:

Question 19. Why did Weil, Serre, and Grothendieck seek an abstract (and
eventually sheaf-theoretic) definition of “algebraic variety” in the first place?

In a straightforward and possibly naive way, the answer to both Question 19
and Question 18 is “because number theory”.30 But I would like to also consider
a di↵erent (and still possibly naive) answer to Question 18: changing the base
field matters because of Question 19. But first I will review the straightforward
answer.

The Weil conjectures have their origins in Riemann’s study of the zeta func-
tion

⇣(s) =
1X

n=1

1

ns

30Question 18 is related to a theme in algebraic geometry which Dieudonne called “extending
the scalars: [...] the introduction of complex points and later of generic points were the
forerunners of what we now consider as perhaps the most characteristic feature of algebraic
geometry, the general idea of change of basis” [27, pg. 828]. Similarly, Question 19 is related
to a theme which Dieudonne called “Extending the space: [...] projective geometry and n-
dimensional geometry paved the way for the modern concepts of “abstract” varieties and
schemes.”

62

over s 2 C. Consider that we can think of C as being obtained from R by adjoin-
ing the square root of �1, i.e. by adding the roots of the equation x2+1. Just so,
the underlying inspiration for Weil’s conjectures is the relation between number
fields, which one can obtain by adjoining solutions of more general equations to
Q, and function fields over finite fields. The importance of this relation cannot
be overstated. If we had to sum up the passage from the Nullstellensatz to FAC
to SGA and even to Deligne’s proof of the final Weil conjecture, it would be
something like “how to think about the discrete, e.g. a finite field Fq, in terms
of the continuous, e.g. the topology of the field of rational functions over Fq”.
For reasons that are too complicated to explain here—I will merely point to
Dieudonne’s excellent history of algebraic geometry [27]—the geometry of the
20th century had turned away from ways of computing the solutions to poly-
nomial equations, which had motivated the development of algebraic geometry
up to the time of Galois. Beginning at around the time of Riemann-Roch, the
fact that all the (algebraic) solutions lived in C, or that taking coe�cients over
C preserved all the (geometric) information about multiplicity, became less im-
portant than understanding and organizing the constellation of invariants above
any algebraic variety, and it turned out that the choice of base field k played an
enormous role.

Suppose that X is a non-singular, n-dimensional projective algebraic variety
over the finite field Fq. The zeta function ⇣X(s) of X is by definition

⇣X(s) = exp

1X

m=1

Nm

m
q�ms

!

where Nm is the number of points of X defined over the degree m extension
Fqm of Fq. Then the Weil conjectures are:

1. (Rationality) ⇣X(s) is a rational function of s.

2. (Riemann hypothesis) More precisely, if n = dimX, ⇣X(s) can be written
as a finite alternating product

⇣X(s) =
P1(s)

P0(s)

· · ·

· · ·

P2n�1(s)

P2n(s)

where each root of each Pk(s) is a complex number of norm q�k/2. This
implies that all zeros of Pk(s) lie on the “critical line” of complex numbers
s with real part k/2.

3. (Functional equation) The roots of Pk(s) are interchanged with the roots
of P2n�k(s) under the substitution s 7! 1

qns
.

4. (Betti numbers) If X is a “reduction mod p” of a non-singular projective
variety X̃ defined over a number field embedded in C, then the degree of
Pk is the k-th Betti number of X̃ with its usual topology.

63

The form of the conjectures stated above is slightly modified from that of
[87].

The last, topological ingredient came with the definition of Weil cohomol-
ogy. Weil observed that the number of points of X over Fqm (i.e. the number
of solutions of X in that field) is equal to the number of fixed points of the

Frobenius automorphism �qm : X̄ ! X̄, xi 7! xq
m

i
, where X̄ indicates the lift

of X over its algebraic closure. In algebraic topology, the Lefschetz fixed-point
theorem states that this second number can be calculated as an alternating sum
of the traces of maps induced by �qm on the cohomology groups of X. This
motivates the following definition:

Definition 4.43. A Weil cohomology theory is a cohomology theory for non-
singular projective varieties (over any field k, but particularly finite fields) sat-
isfying Poincaré duality and some form of the Lefschetz fixed-point theorem.

Example 4.44. Let k be the base field. If char(k) = 0, we have algebraic de
Rham cohomology, with coe�cient field k itself. If k = C, then we have the
standard de Rham cohomology in terms of di↵erential forms.

Example 4.45. Let k be the base field. If � : k ! C is an embedding of k into
the field of complex numbers, we have the so-called Betti cohomology associated
to �, which is just the singular cohomology of the variety viewed as a complex
variety by means of the embedding �. The singular cohomology here is taken
with rational coe�cients, so the coe�cient field of Betti cohomology is the field
Q of rational numbers.

Example 4.46. Let k be the base field. For ` a prime number di↵erent from
the characteristic of k, we have `-adic cohomology, also known as `-adic étale
cohomology. The coe�cient field is the field Q` of `-adic numbers. The `-adic
cohomology groups are vector spaces over this field.

Suppose H⇤ is a Weil cohomology theory. Then it is defined on X, and we
can calculate the number of fixed points of applying �qm to X in terms of H⇤,
where each term Pk(s) in ⇣X(s) corresponds to the induced Frobenius action on
Hk(X). Almost immediately, we can verify rationality, the Riemann hypothesis,
and the Betti numbers for X. The functional equation follows from Poincaré
duality.

So the Weil conjectures clearly motivate the search for solutions over Fq

“because number theory”.

A brief diversion

In 1994, Karl Sims presented a paper at SIGGRAPH called “Evolving Virtual
Creatures” [99]. He simulated a range of di↵erent block-like creatures, and
competed them against each other in activities like swimming, walking, and
jumping. The creatures have a genotype as well as a phenotype, and the “genes”
of the winner are passed on, via a genetic algorithm, to a second generation of
creatures.

64

Figure 4.2: Animated swimming
creatures from [99].

Figure 4.3: Genotype governs both
the morphology and the control
structure.

The interesting thing about the paper is that Sims co-evolved the morphol-
ogy of his creatures in tandem with their control structures. “When a creature
is synthesized from its genetic description, the neural components described
within each part are generated along with the morphological structure. This
causes blocks of neural control circuitry to be replicated along with each in-
stanced part, so each duplicated segment or appendage of a creature can have
a similar but independent local control system. These local control systems can
be connected to enable the possibility of coordinated control. [...] In this way
the genetic language for morphology and control is merged. A local control
system is described for each type of part, and these are copied and connected
into the hierarchy of the creatures body to make a complete distributed nervous
system.”

The Weil conjectures, redux

At the beginning of this note, I asked in Question 16 why category theory proved
so useful in algebraic geometry, secretly knowing it was accepted as useful only
with Grothendieck and Deligne’s proof of the Weil conjectures. I did not dispute
the power of category theory to describe many facets of algebraic geometry—
I simply wanted to know why we would want to do so. I then claimed that
category theory’s success in algebraic geometry arose because it was a compu-
tational* lens on algebraic geometry, and that this success owns much to sheaf
cohomology, which allows us to manipulate the “accounting” aspects of algebraic
geometry in tandem with its topological axiomatization. What makes the par-
ticular, sheaf cohomology theories of algebraic geometry computational* rather
than merely / overwhelmingly technical is the fact that the Zariski topology on
a�ne and projective space is in some sense artificial—it is an axiomatization
of something else entirely from the natural or synthetic topology defined on
k.31 This is not simply an extra parameter that needs to be tracked through

31But then again, “natural topology” only makes sense for certain k.

65

the process of constructing a cohomological invariant, but a whole sequence of
external data, relations, and syzygies that sits “outside the category”, with its
own internal language and “theory of computation”, in a sense yet to be made
precise.

To be clear, manipulating the accounting and the topological axiomatization
is a good thing for much the same reason that functoriality is a good thing—it
makes things work. Manipulating the accounting comes down to (categorical)
operations on sheaves we have already seen: morphisms of sheaves, short and
long exact sequences, direct images, and so on. As for the axiomatization: we
have not yet seen any other topological axiomatization aside from the Zariski
topology, since we have developed sheaf cohomology only up to end of FAC.
But in fact, later axiomatizations such as the étale topology and the Nisnevich
topology would be used to address defects in the usual Zariski sheaf cohomology
that were observed under base change: “natural definitions of S-schemes X !
S, which in classical geometry gave vector bundles X over S, did not have
in general the property of being ‘locally’ products of a (Zariski) neighborhood
and a ‘typical’ fiber” [27, pg. 865]. The Weil conjectures point to these later
axiomatizations. Unfortunately, I cannot develop any of those axiomatizations
here, except to say that they go deep into scheme theory.

What we can say with the tiny bit that we have learned? Returning to
Question 18: the choice of base field k obviously a↵ects the number of solu-
tions we can expect to find for an arbitrary ideal in k[x1, ..., xn]. But as the
Weil conjectures make clear, the choice of base field is also important because
it has an important and subtle e↵ect on the way we organize and define the
systems of invariants—i.e. cohomology theories in di↵erent sheaves, of di↵erent
dimensions, over di↵erent classes of points and open subsets—sitting above any
algebraic variety. In turn, these systems of invariants are literally defined by
the interaction between the algebra of the base field and the geometry embed-
ded within the base topology. To be clear, each cohomology theory defines a
di↵erent system of invariants.32

A last remark. Given what we have already said about Question 16, the
next step is to study the di↵erent, possible topological axiomatizations. We
have seen sheaf cohomology defined on top of the Zariski topology, but it is
also possible to pivot the other way: to use sheaves as an indirect means of
defining new topological axiomatizations, this time over categories rather than
topological spaces. Witness Grothendieck’s étale topology, which was inspired
by the étale space of the structure sheaf. But for now, lacking more specifics, I
will not speculate further.

32Indeed, one can see a similar interaction between ‘base field’ and ‘mechanism of abstrac-
tion’ happening in the earlier foundations of the subject: the simplification of projective
geometry allowed by adding complex points of intersection allowed mathematicians to see
much more clearly the underlying organization of phenomena like the intersection of conics,
leading to later abstractions like the first applications of permutation and symmetry group,
via Klein’s program.

66

“In mathematics, there are not only theorems. There are, what
we call, “philosophies” or “yogas,” which remain vague. Sometimes
we can guess the flavor of what should be true but cannot make a
precise statement. When I want to understand a problem, I first
need to have a panorama of what is around it. A philosophy creates
a panorama where you can put things in place and understand that
if you do something here, you can make progress somewhere else.
That is how things begin to fit together.” - Deligne

“[A] theory of induction is superfluous. It has no function in a
logic of science. The best we can say of a hypothesis is that up
to now it has been able to show its worth, and that it has been
more successful that other hypotheses although, in principle, it can
never be justified, verified, or even shown to be probable. This
appraisal of the hypothesis relies solely upon deductive consequences
(predictions) which may be drawn from the hypothesis: There is no
need to even mention induction.” - Chervonenkis

5 Organizing principles in machine learning

Machine learning is the art and science of constructing and reconstructing math-
ematical models from data. It encompasses forms of statistical inference like
Bayesian inference and various forms of deep learning, though not all mathe-
matical models constructed from data take the form of probability distributions.
A learning algorithm A is a formal method for constructing and reconstructing
mathematical models from data. The mathematical models constructible by A
often belong to a particular class, which we call the concept class C of A. For
the sake of concreteness, I restrict myself to mathematical models in the sense
of concepts c : X ! {�1,+1} (equivalently: subsets of X) for a binary classi-
fication task on a sample space, X. (Though eventually I would like to move
away from the idea of ‘tasks’ to focus solely on the behavior.) So a concept class
is just some subset of 2X .

This thesis seeks to develop a higher-methods perspective on machine learn-
ing in response to the following conjecture:

Conjecture 20 (Gromov [48], informal). There exists a universal learning al-
gorithm.

The conjecture is not about the nature of human or artificial intelligence,
whatever its inspirations. To me, it says something deep about the nature of
mathematical models and how they can be reconstructed from data. Posed in
a di↵erent way:

Question 21. Does there exist a general-purpose, behavioral classification of
learning algorithms? Thus, implicitly: does there exist a general language for
comparing, constructing, and gluing concept classes?

67

The premise of this thesis is that the the answer to Question 21 is yes. That
is, there should exist di↵erent systems—emphasis on systems—of statistical
and behavioral invariants through which we can classify and equate learning
algorithms according to their output over roughly “equivalent” data, in a sense
yet to be made precise. This would allow us to combine and compose learning
algorithms, in a way that the current, relatively ad hoc use of single invariants
(mostly to bound the expected error of the learners) does not. In particular,
I would like to have a more intrinsic, general-purpose definition of the concept
class of A that is independent of the embedding into a sample space. For
example, if A is polynomial regression, then the concept class of A should be a
polynomial ring, not just the graphs of polynomials in a sample space X with a
set of fixed features as basis. But as yet, I am still far from realizing this vision.

Remark 5.1. Long experience in AI tells us that general-purpose definitions are
a bad idea, in the following sense: the real world is too complex, and to solve
a practical problem that is embedded in the real world, any solution must also
be embedded, tested, and iterated in the world. Just as there is no mathemat-
ical technique that works best in every circumstance, there is no single, static
knowledge representation—mathematical or otherwise—through which one can
interpret the world. The world must speak for itself.

On the other hand, much of computational learning theory tries to be
representation-independent. For example, “good” results in computational learn-
ing theory are often distribution-free, i.e. they characterize the learnability of
concept classes for all distributions, completely independent of what the data
actually looks like, (though it’s hardly true that distributional / parametric
approaches really think about what the world looks like either, at least in
any deep or structural way) through combinatorial invariants like the Vapnik-
Chervonenkis (VC) dimension and the Rademacher complexity, accuracy and
confidence parameters as in traditional PAC theory, and traditional complexity
measures like space and time complexity. Moreover, building a learning algo-
rithm that is independent of the representation or parameterization can be very
practically important, since many learning algorithms are quite sensitive to the
choice of representation. For example, witness the performance of ridge regres-
sion (which penalizes large coe�cients) on data centered around 0, versus data
shifted away from 0 by some constant. Every time we normalize data, we are
witnessing the practical importance of representations.

The plan, in brief

The behavior or output of a learning algorithm is the concept (or, more rarely,
the concept class) that it constructs on a given sample set. In the second half
of this thesis, I will focus on developing the relationship between two mecha-
nisms for describing concept classes: the VC dimension and sample compression
schemes. These two are related by a more traditional problem of computational
learning theory: the sample compression conjecture:

Conjecture 22. (Littlestone & Warmuth [65]) Any concept class C of VC-

68

dimension d possesses a sample compression scheme of size O(d).

So the universal learning conjecture motivates this thesis “from the top-
down”, as the search for organizing principles for learning algorithms. The
sample compression conjecture motivates this thesis “from the bottom-up”, as
a series of technical advances relating to a specific combinatorial invariant of
concept classes (the VC dimension) and building o↵ existing attacks on the
conjecture. However, it’s not easy (for me) to see how category theory and
sheaf theory can be used productively for either conjecture. My initial, naive
attempts were far from fruitful. So, working with Samson, I’ve been honing
the first part of my thesis: to directly study AdaBoost, an existing, popular
method for combining and composing learning algorithms, using sheaf theory.
AdaBoost has been analyzed using the VC dimension (though there are some
suggestive defects in arguments based on the VC dimension), but it can also be
interpreted as particular form of sample compression [94, Ch. 4.2].

Concretely, the thesis will unfold through three technical papers to be written
up in Hilary, Trinity, and Michaelmas of 2019.

ensemble
methods

//

��

sample
compression

✏✏
abstract
concept
classes

✏✏
invariant
methods

1. Sheaf cohomology for AdaBoost. See Section 5.4.

2. Cubical complexes on finite domains. See Section 5.5.

3. Invariant methods for machine learning. See Section 5.6.

Sections 5.1 through 5.3 constitute the literature review. Section 5.1 covers
some essential terms and ideas from computational learning theory. Section 5.2
introduces the sample compression conjecture, along with the most recent ge-
ometric attacks on it. Section 5.3 reviews ensemble methods, especially the
AdaBoost algorithm of Freund and Schapire [39] and its relationship to sample
compression.

I sketch the rough plan of the thesis in Sections 5.4 through 5.6.

5 Organizing principles in machine learning 67
5.1 A very brief review of computational learning theory 69
5.2 A very brief review of sample compression 72
5.3 A very brief review of AdaBoost 77
5.4 Sheaf cohomology for AdaBoost 87

5.4.1 Background . 89
5.4.2 An analogy . 92
5.4.3 Cohomology . 93
5.4.4 Conjectures . 94

5.5 Sample compression schemes via cubical complexes 98
5.6 Invariant methods for machine learning 99

5.1 A very brief review of computational learning theory

Computational learning theory was developed in the 60s to analyze the conver-
gence and e�ciency properties of learning algorithms, starting with Noviko↵’s

69

bound [85] and Minsky’s (in)famous attack on the venerable percetron [79], and
gave rise to several practical approaches to learning: PAC theory to boosting,
VC theory to SVMs. Most of the following definitions come from Mohri [80].

In computational learning theory, a concept c is a labeling function c : X !
Y that assigns to each possible input x 2 X a label y 2 Y . In the case of binary
classification, Y = {+,�}, and we commonly think of concepts as the positively
labeled subsets of X. Usually we will be concerned not with particular concepts
but with an entire concept class C—a learning algorithm for C is one capable of
di↵erentiating concepts in C and choosing the right (or best) concept given the
data. Often, we will also refer to concepts as hypotheses and concept classes as
hypothesis spaces, especially if there is some “true” concept that we are trying
to approximate.

Example 5.2. The class of axis-aligned rectangles on X = R2 is a concept class
C ⇢ {+,�}R

2

given by all labelings of data such that the positive examples
c�1(+) are contained in the interior of an axis-aligned rectangle.

In the 1980s, Valiant [115] developed the theory of probably approximately
correct (PAC) learning, which is a framework for analyzing classification algo-
rithms with respect only to the concept class and the cardinality of the sample
set (many PAC results are distribution-free, meaning true for all choices of dis-
tribution). An algorithm A can PAC-learn a concept class C if it almost always
(p � 1 � �) picks a concept c that is approximately correct (error(c) < ✏).
Specifically,

Definition 5.3. For a given learning algorithm A, a concept class C is PAC-
learnable by A if, given a sample set S drawn from D of size m lesser than or
equal to a polynomial in 1/✏, 1/�, n, and size(c), we have

Pr
S⇠Dm

[R(hS) ✏] � 1� �

where R(hS) is the expected error of the hypothesis hS (generated by A) on
the distribution D, and size(c) is an extra parameter representing the cost of
the computational representation of c 2 C. ✏ is called the accuracy and � is
called the confidence. The sample size m is called the sample complexity of the
algorithm. (A bit of notation: in machine learning, PrS⇠Dm(E) is shorthand
for the probability of event E, given that S is obtained from drawing i.i.d. m
examples from the distribution D.)

We say that C is merely learnable if 1 > m � poly(1/✏, 1/�, n, size(c)).

Most results in PAC learning are confined to finite concept classes, while
most learning problems of interest require one to distinguish between infinitely-
many concepts with only a finite number of samples. One general strategy for
lifting PAC-type results to the infinite case is to establish the result for a family
of (finite) concept classes. There are three related ways of doing this: via the
Rademacher complexity of C, via the growth function of C, and via the VC
dimension of C.

70

Definition 5.4. Given a sample S = (z1, ..., zm) and a class of real-valued
functions C on the domain Z, the empirical Rademacher complexity of C given
S is

RadS(F) =
1

m
E
"
sup
c2C

mX

i=1

�if(zi)

#

where �i are independent random variables drawn from the Rademacher distri-
bution, i.e. Pr(�i = +1) = Pr(�i = �1) = 0.5.

Definition 5.5. The growth function ⇧C : N ! N for a concept class C on a
domain X is defined by:

⇧C(m) = max
{x1,...,xm}⇢X

|{(c(x1), .., c(xm)) : c 2 C}|

Equivalently, ⇧C(m) is the maximum number of distinct ways in whichm points
from X can be classified using concepts in C.

Note that the highest value that ⇧C for a fixed m can achieve is 2m, i.e. all
possible binary labelings of m points.

Example 5.6. Let X = R. Let ⌃1 be the concept class of threshold functions

c(x) =

(
+1 if x � ⌫

�1 otherwise

where ⌫ is a constant. Then ⇧⌃1(m) = m+ 1.

Example 5.7. LetX = R, and consider the concept classK of unions of intervals,
i.e. c(x) = +1 on a finite set of intervals and �1 on the complement. Then
⇧K(m) = 2m for all m.

The growth function is often used to bound the expected error using various
variants of the following lemma.

Lemma 5.8. For any given concept class C and any sample set S of size m,
with probability 1� �

R(c)
2 log2(⇧C(2m)) + 2 log2(2/�)

m

for every c 2 C consistent with S.

Note that variants of the above lemma exist where c may not be completely
consistent with S, i.e. R̂(h) > 0.

Definition 5.9. We say that a sample set S of size m is shattered by a concept
class C when all 2m possible labelings can be realized by concepts in C. That
is, S is shattered by C if ⇧C(|S|) = 2m.

71

Definition 5.10. The Vapnik-Chernovenkis (VC) dimension of a concept class
C ⇢ {0, 1}X is

VC(C) = max {m : ⇧C(m) = 2m}

In other words, the VC dimension of C is the cardinality of the largest set of
points that C can shatter.

Lemma 5.8 has an analogous formulation in terms of the VC dimension.

Lemma 5.11. For any given concept class C and any sample set S of size m,
with probability 1� �

R(c)
2d log2(2em/d) + 2 log2(2/�)

m

for every c 2 C consistent with S.

While VC dimension is defined only for binary classification, note that there
are similar notions for multiclass problems, i.e. |Y | > 2.

By a basic result called Sauer’s lemma, a concept class C is PAC-learnable
if and only if it has finite VC dimension. We will come back to Sauer’s lemma
in the next section.

term definition / notation
concept or hypothesis h : X ! Y, Y = {�1,+1}
loss function L(a, b), penalty for a 6= b
expected error or test error R(h) = E(x,y)⇠D[L(h(x), y)]
empirical error or training error R̂S(h) =

1
m

P
m

i=1 L(h(xi), yi)
generalization error R(h)� R̂(h)

zero-one loss L0�1(a, b) =

(
0 a = b

1 a 6= b

square loss Lsq(a, b) = (1� ab)2

hinge loss Lhin(a) = max(0, 1� ab)
logistic loss Llog(a, b) = log(1 + e�ab)
exponential loss Lexp(a, b) = e�ab

sample complexity m, number of examples needed to PAC-learn a given concept

Table 5.1: A glossary of basic mechanisms for describing the behavior of a
learning algorithm A with hypothesis h on a given (labeled) data set S.

5.2 A very brief review of sample compression

For a given concept class C ⇢ 2X , a (unlabeled) sample compression scheme
of size k is a pair of maps (f, g) where f is a compression function mapping
finite sample sets S from X to compressed subsets of examples of size k,

72

called compression sets, and g is a reconstruction function mapping each such
compression set to a concept consistent with S.

f : (X ⇥ Y)m ! Xk

g : Xk
! C

Note that in certain variants, g need not return a concept in C, as long as
the concept is consistent with the original hypothesis.

The founding paper is Littlestone & Warmuth’s [65]. In it, they defined
sample compression schemes, described the connection to PAC learning, and
articulated the sample compression conjecture:

Conjecture 23. (Littlestone & Warmuth [65]) Any concept class C of VC
dimension d admits sample compression schemes of size O(d).

Translation:

1. VC dimension d: in the worst case, we can learn with poly(d) examples

2. schemes of size d: in the best case, we can learn with d examples

Of course, having a sample compression scheme of size d for a concept class
almost immediately gives us a class of VC dimension d [65]. But can we use the
VC dimension, usually used to define “worst case” upper bounds on a learning
algorithm, to construct a strict bound on the number of examples we have to
use in the best case, with the “best” examples?33

Example 5.12 (Axis-aligned rectangles). The easiest example of an (unlabeled)
sample compression scheme is that for axis-aligned rectangles in R2. Given a
sample set consistent with some rectangle, the compression function f com-
presses the sample to the topmost, bottommost, rightmost, and leftmost (pos-
itive) examples. The reconstruction function g returns the tightest-fit axis-
aligned rectangle around these examples. So we have a sample compression
scheme of size 4=VC(C) for axis-aligned rectangles. See Section 5.2.

A sample compression scheme of size k is a proof of the proposition that at
most k examples are needed to describe a given concept c 2 C—that is, as a
kind of minimum-length description. The point is that sample compression is
about samples. But in general, we can explicitly define the compression function
f and the reconstruction function g to include bit strings 2 M with arbitrary
information:

f : (X ⇥ Y)m ! Xk
⇥M

g : Xk
⇥M ! C.

For example, there exists a trivial compression scheme whose compression
function outputs the empty compression set and a bit string that encodes the

33The best-worst comparison isn’t exactly right, since we do not assume, in a typical VC
analysis, that we receive the “worst” examples. For a strict contrast, we might look at
adversarial learning.

73

Figure 5.1: Axis-aligned rectangles as concepts. Concepts c1, c2 are given by
the dotted boxes, and d(c1 + c2) is the boundary of c1 + c2 given by the four
circled points.

minimum-length description of the given concept, and a reconstruction function
that interprets the bit string back into the original concept.

Let S be the sample set, and let � be a message string. If g(S,�) ignores �,
then we have recovered the original definition of sample compression schemes. If
g(S,�) ignores S, then we have returned to standard statistical learning theory
[?].

A specific variant of generalized compression schemes are labeled compression
schemes, which output not only the compression set but also the labels in {0, 1}:

flabeled : (X ⇥ Y)m ! (X ⇥ Y)k

glabeled : (X ⇥ Y)k
! C

Historically, labeled compression schemes were considered before (unlabeled)
compression schemes.

Example 5.13 (Halving). Suppose X is a finite domain. Then the Halving
algorithm of Angluin and Littlestone [64] suggests a simple labeled compression
scheme for samples from X called the one-pass compression scheme [36]. Recall
that the Halving algorithm keeps track of all concepts consistent with the past
examples in a “version space” and, given a new example, predicts the label
based on a majority vote of all concepts in the version space. It then “halves”
the concepts in memory by deleting those that were wrong on the example.

Suppose that we modify the Halving algorithm so that it culls the concepts
in its version space only on mistakes; then for every example that it predicts
incorrectly, we save that example to a (labeled) compression set A± (whose
elements are of the form (xi, yi) where xi 2 X and yi 2 {�1, 1}). We can
then use the Halving algorithm to reconstruct the original concept. Since the
Halving algorithm has a mistake bound of log |C| for any concept class C on

74

X, this immediately shows that we have a sample compression scheme of size
at most log |C| for any finite concept class C.

Before we get too hopeful, note that the compression scheme here cannot
help us show the sample compression conjecture since it depends only on the
cardinality of C (as opposed to the VC dimension). Clearly a concept class of
constant VC dimension could still be of arbitrary size, and thus have a sample
compression scheme of arbitrary size.

Example 5.14 (SVM). Support vector machines (SVMs) lead to a sample com-
pression scheme for halfspaces {x 2 Rn : w · x � b}, since it su�ces to keep just
the set of (essential) support vectors, along with their labels, as we can infer
the maximum-margin hyperplane in dimension n from a set of n + 1 essential
support vectors. As expected, n + 1 is also the VC dimension of the concept
class of halfspaces of dimension n.

The combinatorial picture

Usually we think of VC dimension as a combinatorial invariant of the concept
class (e.g. as the size of the maximum shattering set of a concept class), and
this interpretation goes along with a basic result called the Sauer-Shelah lemma,
often referred to as Sauer’s lemma:

Lemma 5.15 (Sauer-Shelah). Let �d(m) =
P

d

i=0

�
m

i

�
, then if C ⇢ 2X is a

concept class on X with finite VC dimension d, we have

⇧C(|S|) �d(|S|) for all samples S ⇢ X of size m,

where the growth function ⇧C , discussed in Section 5.1, gives the number of
di↵erent ways to classify a finite subset S using concepts in C.

Sauer’s lemma, which was proved independently in statistical learning, com-
binatorics, and model theory, directly implies that a concept class is PAC-
learnable if and only if it has finite VC dimension (e.g., see [13]).

To color in this combinatorial sketch of VC dimension, we define maximum
classes:

Definition 5.16. A concept class C ⇢ 2X is maximum if ⇧C(|S|) = �d(|S|)
for all finite subsets S of X. That is, every finite subset of X satisfies Sauer’s
lemma with equality.

Example 5.17. From [61]: a finite maximum class of VC dimension 2 with 11
concepts, along with their behavior on a sample set of 4 (maximally distinct)
examples x1, x2, x3, x4 2 Rn.

Example 5.18. The class of positive halfspaces (halfspaces that contain the
point (1, 0, ..., 0)) and negative halfspaces (halfspaces that contain the point
(�1, 0, ..., 0)) are almost maximum, in that the restriction to (any shattering
class of) any set of points in general position will produce a maximum class.

Example 5.19. The class of axis-aligned rectangles is not maximum.

75

x1 x2 x3 x4

c1 0 0 0 0
c2 0 0 1 0
c3 0 0 1 1
c4 0 1 0 0
c5 0 1 0 1
c6 0 1 1 0
c7 0 1 1 1
c8 1 0 0 0
c9 1 0 1 0
c10 1 0 1 1
c11 1 1 0 0

Maximum classes are, in a way, the most well-structured classes of those
with finite VC dimension. Typically, we use the VC dimension to say some-
thing about the concept class; e.g. the growth function is often exponential in
|S|, so having finite VC dimension says a lot about the “niceness” of C. To say
that the growth function and �d are equal allows us to use maximum classes to
say something about the VC dimension; in fact many facts about VC dimen-
sion can be translated into facts about maximum classes, which will be helpful
because maximum classes are always compressible. Several current attacks on
the compression conjecture exploit this feature of maximum classes; the hope is
to find a way of embedding arbitrary classes of VC dimension d into maximum
classes of VC dimension O(d).

The compressibility of maximum classes has to do with the fact that max-
imum classes have a nice, global structure that allows them to be contracted
“along the sample” to a trivial concept class: a class having only one concept.
The use of the word “contracted” is no accident; beautifully, maximum classes
over a finite domain X = {0, 1}n have a very convenient geometric structure:
we can view them as cubical complexes (so, just subsets of an n-cube), and
the existence of a (certain sort of) k-compression scheme as synonymous with
k-contractibility [93]. So there is at least a proof-of-concept of a productive use
of topological methods in this area.

For a more detailed introduction to sample compression (with more proofs),
consider [36] or Floyd’s thesis [35]. For more details on the geometric approaches
to maximum classes, we encourage the reader to look at [61] for an introduction
and [93] for the latest research. Moran [82] recently demonstrated that, for
any concept class (whether or not over a finite domain), there exists a sample
compression scheme of at least order exponential in the VC dimension.

While this thesis does not really aim at the compression conjecture, it is
a helpful and concrete motivation—a stone against which we can sharpen our
intuitions and questions about learning. Many practical machine learning algo-
rithms are based on finding compression sets, e.g. SVMs and kernel machines.
Less well-known are the applications to AdaBoost, discussed below.

76

5.3 A very brief review of AdaBoost

PAC learning constructs strong learners, in the sense that we can (almost)
always construct a hypothesis with arbitrarily small empirical error, given a
reasonable number of examples. But strong learners may be di�cult to con-
struct depending on how complicated the concept class is, and they may have
other undesirable properties, e.g. high computational complexity. On the other
hand, weak learners, which need to do only better than guessing, can often be
constructed quite easily.

Definition 5.20. For a given learning algorithm A, a concept class C is weakly
PAC-learnable by A if, given any sample set S ⇠ Dm, it almost always picks a
hypothesis h 2 C that is better than random guessing on X. That is,

Pr
S⇠Dm

[R(h, S)
1

2
� ✏] � 1� �, ✏, � > 0.

As usual, ✏ and � are the accuracy and confidence parameters, respectively.
For a given concept class C, we call such a learning algorithm A a weak

learner on C, and the output of A a weak classifier.

Boosting is a class of techniques for combining or constructing strong learn-
ers from many weak learners, though in practice, it is only used to combine
the hypotheses of many instances of one weak learning algorithm. Following
convention, we refer to those methods involving multiple hypotheses (called the
base classifiers) of one base learner as ensemble methods, while those that in-
volve di↵erent learners as multiple classifier systems. At least in the first part
of the thesis, we will be dealing solely with ensemble methods.

Example 5.21. Given {h1, h2, h3} as hypotheses on X, where

X =

•

•

•

h1(X) =

�

+

+

h2(X) =

+

�

+

h3(X) =

+

+

+

we have an obvious ensemble method given by

majority vote(h1, h2, h3)(X) =

+

+

+

Aside from the weak learning condition, ensemble methods are defined by
the diversity of their base classifiers. Roughly, a set of base classifiers is diverse

77

if their errors are uncorrelated; diverse classifiers, when wrong, tend to get
di↵erent examples wrong. The importance of diversity is obvious; it doesn’t
make much sense to combine many copies of the same classifier. Many ensemble
methods optimize for diversity, e.g. bagging. Unfortunately, as of 2014 [121],
there is still no agreed-upon definition of diversity or how to measure it [26, 60,
109]. We will come back to this problem in Section 5.4.

Among the variety of boosting methods, perhaps the most famous and robust
algorithm is AdaBoost, introduced by Yoav Freund and Robert Schapire in
[39]. Uniquely among boosting methods, AdaBoost maintains a distribution
over not only the set of base classifiers, but also a distribution over the sample
set S. The distribution over the base classifiers weighs the relative importance
or trustworthiness of each base classifier. The distribution over the sample set
S tells us how to count errors on S.

Rather than go through the pseudocode directly (see Algorithm 1), let’s walk
through a quick example using axis-aligned hyperplanes as our base classifiers.

Example 5.22. The following is borrowed from [80]. Start with a sample set S,
as below.

AdaBoost proceeds in rounds (called boosting rounds). In round t = 1, every
example in S has the same weight. We ask the weak learner for a classifier, and
it returns the following hyperplane:

t = 1

First, we calculate a error coe�cient, ↵1, that characterizes how badly h1 did
on the sample, given the distribution at t = 1. We then increase or decrease the
weights on S accordingly: more if h1 got the label wrong, and less if it got it
right.

t = 1

78

At t = 2, we repeat the procedure with the new weights.

t = 2 t = 2

And so on, for t = 3.

t = 3 t = 3

We then iterate for an arbitrary number of rounds of boosting, T . For T = 3,
the output of AdaBoost is of the form

Remark 5.23. Axis-aligned hyperplanes are typically associated with decision
stumps, a.k.a. boosting stumps, which are the most commonly used base learner
in AdaBoost. With decision stumps, the total computational complexity of
AdaBoost is

O(mN logm+mNT) = O(m logm)

where m is the size of the sample, N is the dimension of the space, and T is the
number of rounds of boosting [80]. Of course there are many di↵erent options
for base learner, e.g. [63] used kernel SVMs by conditioning the RBF kernel on
a parameter �, the “Gaussian width”, but decisions stumps tend to have the
best across-the-board performance.

Most treatments of AdaBoost, especially theoretical ones, do not assume
any particular weak learner. Instead, they often pick the concept class.

79

It remains to review some basic results on the empirical error and gener-
alization error of AdaBoost, before treating the connection between AdaBoost
and sample compression.

Algorithm 1 AdaBoost

1: procedure AdaBoost(S, T,A) . Assuming labels in Y = {�1,+1}
2: m |S| . S is the sample set
3: for i = 1 to m do D1(i) 1/m . Initialize the weights on S

4: for t = 1 to T do . T rounds of boosting
5: ht A(S, ~Dt) . The weak learner A
6: ✏t

P
m

i=1 Dt(i)yiht(xi) . Error term, weighted on ~Dt

7: ↵t
1
2 log

1�✏t
✏ t

. ↵t : (0, 1)! R
8: Zt 2(✏t(1� ✏t))1/2 . Normalization term
9: for i = 1 to m do

10: Dt+1(i)
Dt(i)
Zt

exp(�↵tyiht(xi)) . Update new weights

11: g
P

T

t=1 ↵tht

12: return h sign(g)

Empirical error

Theorem 5.24 (Freund and Schapire [39]). For h returned by AdaBoost and
any S of size m,

R̂S(h) exp(�2
TX

t=1

(
1

2
� ✏t)

2

i.e. the empirical error on S decreases as an exponential function of T .
Further, if for all t 2 [1, T] we have a constant � (1/2� ✏t), then

R̂S(h) exp(�2�2T)

i.e. � (called the edge) gives a uniform convergence result on R̂(h).

Proof. I assume the following small lemma:

Dt+1(i) =
e�yift(xi)

m
Q

t

s=1 Zs

80

Then

R̂(h) =
1

m

mX

i=1

#(yi 6= h(xi)) (1)

1

m

mX

i=1

e�yig(xi) note the replacement of h with g (2)

=
1

m

mX

i=1

"
m

TY

t=1

ZtDT+1(i)

#
by the lemma above (3)

=
TY

t=1

Zt (4)

=
TY

t=1

2
p
✏t(1� ✏t) by definition of Zt (5)

=
TY

t=1

r
1� 4(

1

2
� ✏t)2 (6)

TY

t=1

exp[�2(
1

2
� ✏2)

2] since
p
1� x 1� x e�x (7)

= exp [�2
TX

t=1

(
1

2
� ✏t)

2] (8)

What’s going here? First o↵, it’s clear that the empirical error goes down
very quickly. In experiments, the empirical error usually disappears within
several rounds of boosting. But perhaps more importantly, the theorem gives
us a good amount of insight into the structure of AdaBoost, and especially into
the definitions of ↵t (Line 7 of Algorithm 1), Zt (Line 8), and the update rule
for Dt+1 (Line 10). In e↵ect, Zt and the update rule are derived from the choice
of ↵t, which itself was defined in order to minimize a particular loss function—
interpreted in the theorem, Eq. (7), as an upper bound on the zero-one loss
1� x—called the exponential loss function,

lossexp(h) =
X

xi2S

e�yih(xi).

There are other loss functions, e.g. the logistic loss (see Section 5.3)

losslog(h) =
X

xi2S

log(1 + e�yif(xi))

which correspond to other versions of boosting, e.g. LogitBoost [40].

81

Figure 5.2: Di↵erent loss functions from [80], all of which can be interpreted
as upper bounds over the zero-one loss. AdaBoost is equivalent to coordinate
descent on the boosting loss, also known as the exponential loss.

Generalization bounds via VC dimension

Generalization error, as discussed in Section 5.1, is the di↵erence between the
expected error R(h) of hypothesis h on all of X and the empirical error R̂S(h) on
a finite sample S ⇢ X. Even though we have shown that AdaBoost minimizes
the empirical error, this is not the same as showing that it will minimize the
expected error on all of X, which is the goal of boosting and of PAC learning
more generally.

One common way of upper bounding the generalization error is by measuring
the complexity of the concept class. The VC dimension is a way of doing this
for infinite concept classes. For finite concept classes we do not need to resort
to the VC dimension, but the derivation is still quite instructive.

Recall that the hypotheses output by AdaBoost are of the form h = sign(g) =

sign(
P

T

t=1 ↵tht). Let CT be the concept class representing all functions of that
form. (Note: since ↵t 2 R, CT is infinite, whether or not C is finite.)

The following is Theorem 4.3 in [94].

Theorem 5.25. Suppose AdaBoost is run for T rounds on m � T random
examples, using base classifiers from a finite concept class C. Then, with prob-
ability at least 1 � � (over the choice of the random sample), the combined
classifier h satisfies

R(h) R̂(h) +

s
32[T log2(

em|C|

T
) + log2(8/�)]

m
⇠ R̂(h) +O(

T logm|C|/T

m
)

Furthermore, with probability at least 1� �, if h is consistent with the training

82

set (so that R̂(h) = 0), then

R(h)
2T log2(

2em|C|

T
) + 2 log2(2/�)

m
⇠ O(T

log(m|C|/T)

m
.

The theorem tells us that the bound on the expected error is in terms of the
empirical error R̂, the number examples m, and two terms that stand in for the
complexity of CT : the number of concepts in |C| and the number of boosting
rounds T .

For infinite concept classes, we have the following theorem (Theorem 4.6 in
[94]):

Theorem 5.26. Suppose AdaBoost is run for T rounds on m � T random
examples, using base classifiers from a concept class C of VC dimension d � 1.
Then, with probability at least 1� � (over the choice of the random sample), the
combined classifier h satisfies

R(h) R̂(h) +

r
32[T log2(

em

T
) + d log2(

em

d
) log2(8/�)]

m

Furthermore, with probability at least 1� �, if h is consistent with the training
set (so that R̂(h) = 0), then

R(h)
2T log2(

2em
T

) + d log2(
2em
d

) + 2 log2(2/�)

m
.

Note the obvious analogy with the previous theorem.

Remark 5.27. If the base classifiers are drawn from a concept class of VC di-
mension d, then the VC dimension of the combined classifiers in CT output by
AdaBoost (after T rounds of boosting) is at most

VC(CT) = 2(d+ 1)(T + 1) log2((T + 1)e).

In particular, this implies that

R(h) ⇠ O(dT log2 T).

In other words, the number of expected errors increases as T increases; VC
analysis tells us that AdaBoost will tend to overfit for large T . However, in ac-
tual experiments, AdaBoost does not tend to overfit. In fact, the generalization
performance tends to improve even for T � 0.

So the VC dimension o↵ers only a weak sort of bound.

83

Generalization bounds via margin analysis

The idea: margin-based methods quantify the “confidence” of the combined
hypothesis, which continues to increase even when the empirical error goes to
0.

Definition 5.28. Let ĈT be the set of functions of the form g =
P

T

t=1 ↵tht.

The margin of a point (x, y) with respect to g 2 ĈT is

margin
g
: X ⇥ Y ! [�1, 1]

(x, y) 7! yg(x).

Definition 5.29. The `1-margin ⇢(x) of a point (x, y) with respect to g 2 ĈT

is

⇢(x) =
yg(x)P
m

t=T
|↵t|

= y
~↵ · ~h(x)

||↵||1
.

We let ⇢g = mini2[1,m] yi
~↵·~h(x)
||↵||1

.

What’s going on here? In e↵ect, ⇢(x) is measuring the || · ||1 distance
between ĥ(x) and the hyperplane ~↵ · ~x = 0.

The key result of margin-based methods: generalization error is independent
of T ! In particular, with probability 1� �,

R(g) R̂⇢(g) +
2

⇢
Radm(C) +

r
log2 1/�

2m

where Radm(C) is the Rademacher complexity of C. Note that this result is
true for any g

||↵||1
which lies in the convex hull CT , for any concept class C.

But it’s not that AdaBoost achieves the maximum margin or works as a
maximum-margin optimizer. In fact, empirically, it seems to beat algorithms
that strictly optimize the `1-margin. But margin-based methods help us un-
derstand boosting as a way of adaptively fitting and adjusting the loss/margin
criterion. We will address this fact in Section 5.4.

Generalization bounds via sample compression

In Section 5.2, we focused on how to define and construct sample compression
schemes for di↵erent concept classes, abstracting away from learning algorithms
completely. But of course, many algorithm do take the form of sample com-
pression schemes, and these tend to benefit from certain guarantees. Just as
the VC dimension can be thought of as a description of how much information
(in the form of a shattering set of size m) is needed to distinguish between two
concepts in a concept class, a sample compression scheme of size k tells us that
only k points are needed to distinguish between any two concepts.

In particular, we have the following theorem:

84

Theorem 5.30 ([94, Ch. 4.2]). Suppose a learning algorithm based on a labeled
compression scheme of size k is provided with a random training set S of size m.
Then with probability at least 1� �, any hypothesis h consistent with S produced
by this algorithm satisfies

R(h)
k log

m
+ log(1/�)

m� k
.

Freund and Schapire [94, Ch. 4.2] showed that AdaBoost is based on a
certain kind of labeled compression scheme.

The idea: we start with a severely constrained version of AdaBoost with the
following changes (in order of severity)

1. deterministic weak learner: the weak learner does not employ randomiza-
tion, so it is a deterministic mapping from a sequence of examples to a
hypothesis

2. resampling: instead of treating the current distribution Dt as a weight on
S, on each round of boosting, the weak learner is trained on an unweighted
sample of size m0 < m drawn with replacement from Dt over S

3. unweighted vote: the combined classifier is a simple unweighted majority
vote, i.e. ↵1 = ↵2 = ... = 1

This constrained version is clearly a sample compression scheme of size k = Tm0,
since each combined classifier could be uniquely represented by a compression
scheme of size Tm0. The problem is with the last assumption: clearly, AdaBoost
does not output an unweighted majority vote. But how can we “compress”
a hypothesis involving real-valued weights ↵1, ...,↵T down to a finite set of
examples?

In response, Freund and Schapire introduce hybrid compression schemes:
compression schemes where the reconstruction function returns not a single hy-
pothesis but an entire concept class. How it works: given a sample set S of size
m, AdaBoost first “compresses” S (i.e. resampling according to Dt) down to
a sequence ((x1, y1), ..., (xk, ym0)) in S. Actually, it does this T times, sequen-
tially and each time with resampling from Dt, t 2 [1, T]. This larger sequence
((x1, y1), ..., (xk, yTm0)) of size Tm0 is the true compression set. AdaBoost then
“reconstructs” the hypothesis class—not hypothesis!—of all weighted majority
vote classifiers over the fixed set of base classifiers h1, ..., hT :

�T = {h(x) =
TX

t=1

↵tht : ↵1, ...,↵T 2 R}.

It’s not clear from [94, Ch. 4.2] if the story simple ends there; there is no
treatment of how AdaBoost picks an actual hypothesis from this class. There
may be some sort of generalized compression scheme, where theDt are treated as
message strings, then used to reconstruct the ↵i, that captures the full behavior
of AdaBoost,

85

Given that AdaBoost is a compression scheme, we can use (a slightly modi-
fied version of) Theorem 5.30 to demonstrate the following bound:

Theorem 5.31 ([94, Ch. 4.2]). Suppose AdaBoost is run for T rounds on
m � (m0 + 1)T random examples. Assume that we have a deterministic weak
learner and resampling as above. Then, with probability at least 1 � � (over
the choice of the random sample), the combined classifier h, assuming it is
consistent with S, satisfies

R(h)
2T log2(2e(m� Tm0)/T) + 2Tm0 log2 m+ 2 log(2/�)

m� Tm0
⇠ O(

T log2 m

m� T
).

The problem with this bound? Aside from the fact that T is still a “bad”
number in the bound (the error goes up as T increases), the bound is slightly
boring. It looks a lot like bounds we’ve already seen from the VC dimension;
we’ve simply replaced one complexity measure of hypotheses, denominated in
terms of the concept class, with another, denominated in terms of examples.

Bias and variance

There exists a tension between the accuracy of the weak learner and the diversity
of the ensemble. That is, since more accurate learners make less mistakes (on
the training data), ensembles of accurate learners will tend to agree on more
examples. Additionally, even when they make mistakes, accurate learners tend
to make similar mistakes (reflecting intrinsic noise or outliers). This tradeo↵ is
reflected in a more well-known problem in machine learning: the bias-variance
tradeo↵. In particular, there is a classic decomposition of the expected error
called the bias-variance decomposition:

R(h) = Bias(h) + Var(h) + ✏ (9)

where ✏ is some measure of the irreducible error (e.g. from noise) in the data, bias
is the expected loss between the “average” hypothesis of the learner and the true
hypothesis, and variance is a measure of the error arising from the sensitivity
of the learner to small fluctuations in the sample set, i.e. overfitting.34 Fact:
a more accurate learner has less bias. Intuitively at least, we expect a more
diverse ensemble to have less variance and thus less risk of overfitting.

34Compare Eq. (9) with the typical form of the generalization bounds we have seen:

R(h) R̂(h) + complexity(C) + confidence(�). (10)

If we assume that the combined hypothesis h of AdaBoost is consistent with the training
data, we can ignore the empirical error R̂(h) in Eq. (10). By the weak learning criterion and
Theorem 4.28 in [94], we can ignore the bias term in Eq. (9); with su�cient rounds of boosting
and large enough m, we can always approximate the true concept on X. So a typical bound
on the variance of AdaBoost should look something like the following:

Var(h) complexity(C) + confidence(�)� ✏ (11)

Interpretation: the amount that h will overfit is bounded by the complexity of the concept
class C it is drawn from, the confidence of the hypothesis, with some allowance for intrinsic
noise.

86

Not unexpectedly (given the di�culty of defining diversity), there is a lot
controversy over the right definitions of bias and variance. In a way that is still
unclear to me, obtaining a proper diversity measure is likely at least somewhat
related to obtaining a proper definition of bias and variance.

As an example, consider one such definition from [28]:

Definition 5.32. For a fixed learning algorithm and fixed x, let ym 2 Y be the
main prediction given by

ym = argmin
y0 ES⇠Dm

⇥
L(hS(x), y

0)
⇤
.

Note that S is not fixed above, so hS ranges over all hypotheses generated by
the learner for all possible S.

Definition 5.33. The main hypothesis is the hypothesis hm which outputs the
main prediction for all x 2 X.

Note that hm is not necessarily in the concept class of the given learning
algorithm.

Definition 5.34. For a given learner, the bias of a hypothesis on X is

Bias(h) = E(x,y)⇠D

⇥
L(hm(x), y)

⇤
.

Definition 5.35. For a given learner, the variance of a hypothesis on X is

Var(h) = E(x,y)⇠D,S⇠Dm

⇥
L(hm(x), hS(x))

⇤

Note the dependence on the particular loss function in both the variance and
the bias.

5.4 Sheaf cohomology for AdaBoost

Everything in this section, should be marked ‘speculative’, in the sense of likely
to change or to be wrong.

So far, we have reviewed boosting, an ensemble approach to learning that
combines many instances of a weak learner into a strong learner. The hypotheses
of the weak learner are then combined in some way, e.g. in a linear combination,
in order to output a hypothesis, and the relative weight of each hypothesis
is adjusted over many rounds of boosting, based on their errors on training
examples. AdaBoost, in particular, “compresses” samples at each iteration
(whether through re-weighting or resampling) so as to focus attention on those
examples which are harder to classify; namely, on those which previous rounds
of the weak learner have misclassified. From the perspective of compression,
AdaBoost learns the corners or boundaries of the data set through successive
rounds of boosting, which it then uses to guide the construction of a strong
learner with low generalization error.

The heft behind most theoretical guarantees for AdaBoost comes from the
weak learner assumption; indeed, we have almost never invoked the update step

87

in Line 10 of Algorithm 1 (the one exception: in the first guarantee on the
empirical error) except through T , the number of rounds of boosting. In the
margin-based analysis, even T itself was done away with. This makes sense in
a way, since similar guarantees apply to other forms of boosting. In a game-
theoretic analysis, [38] uses von Neumann’s minmax theorem to prove that
the weak learning condition is equivalent to saying that the data is linearly
separable35 (with `1 margin), and a further refinement [94, Ch. 4.3] allows us
to prove an even stronger statement: a concept class is weakly PAC-learnable if
and only if it is (strongly) PAC-learnable. So what we thought was a relatively
weak assumption turns out to be quite a strong assumption: in principle, it is
just as hard to build weak learners as it is to build strong learners!

But ensemble methods like AdaBoost are also characterized by the diver-
sity of their base classifiers. Clearly, AdaBoost tends to increase diversity over
rounds of boosting: according to [57], “AdaBoost’s choice of the new distribu-
tion can be seen as an approximate solution to the following problem: Find a
new distribution that is closest to the old distribution subject to the constraint
that the new distribution is orthogonal to the vector of mistakes of the current
weak hypothesis.” Unfortunately, as of 2014 [121], there is still no agreed-upon
definition of diversity or how to measure it in an ensemble [26, 60, 109]. Fur-
ther, ensemble methods that strictly try to maximize diversity have relatively
poor performance; [109, pg. 256] explains this as “the minimum margin of an
ensemble is not monotonically increasing with the diversity.”

Example 5.36. Three examples, collected from [109] and [60]. Let hj , hk be two
base classifiers in an ensemble, S a sample set of size m, T the number of base
classifiers, and let n(a, b) = nj,k(a, b) be the number of training examples in S
on which hj outputs a and hk outputs b.

1. The disagreement measure between hj , hj is

disj,k =
n(1,�1) + n(�1, 1)

n(1, 1) + n(�1, 1) + n(1,�1) + n(�1,�1)
.

This is one of the most straightforward measures. The diversity of the
entire ensemble is then the average,

dis =
2

T (T � 1)

TX

t=1

TX

k=t+1

disj,k.

2. The entropy measure E is one among many based on the idea that, for
a particular x 2 X, the highest diversity is when half the base classifiers
predict �1 and the other predict +1. Let l(xi) be the number of base
classifiers that correctly classify xi. Then

E =
1

m

mX

i=1

1

T � ceiling(T)
min{l(xi), L� l(xi)}

35Note that “linearly separable” here means that X can be classified, with no error at all,
with a linear combination of weak learners, i.e. a hyperplane defined by ~↵ ·~h, not that X can
be separated by a typical hyperplane in Rn.

88

3. Let li = T
P

ht:ht(xi) 6=yi
↵t, i.e. the weighted vote of all incorrect classifiers

on xi. The Kohavi-Wolpert variance of an ensemble is then defined as

KW =
1

mT 2

mX

i=1

li(T � li).

This measure is adapted from the bias-variance decomposition of the error
of a classifier (see below).

Empirically, learning algorithms constructed to maximize these and other
diversity measures all have similar performance [60]. They also all underper-
form AdaBoost, implying that AdaBoost is not just trying to maximize the
diversity of its ensemble. The state-of-the-art explanation for the generalization
performance of AdaBoost is that it tends to maximize the minimum margin,
thus increasing the confidence of a hypothesis even after the empirical error goes
to 0 [94]. To be clear, this is a high bar; much of the generalization performance
of the algorithm can be explained by margin-based methods. But still, we know
that AdaBoost is not maximizing the margin, and that it even outperforms
boosting algorithms that strictly optimize the `1 margin. So there is something
left to explain: “perhaps a finer analysis based on a di↵erent notion than that
of margin could shed light on the properties of the algorithm” [80].

Question 24. Can we use diversity measures to provide a finer analysis of
AdaBoost than margin-based methods?

My proposal:

(1) characterize diversity measures by their contextuality, and

(2) use cohomological arguments to reconstruct existing generalization bounds.

(1) builds on a suggestion of David Balduzzi in [10], who proposed an anal-
ysis of distributed systems (e.g. neural systems, or cellular automata) using
what he called structure presheaves, which are similar to the measurement
presheaves DR � E in [2]. (I’ve written up a brief discussion of this approach
in Appendix A.) Indeed, in an unpublished research statement [9], Balduzzi
proposes a research program to study ensemble methods as distributed systems
using sheaf cohomology—with the first example to be an analysis of AdaBoost!
Unfortunately, I’m not aware of any further work in this vein. So I would like
to start by realizing Balduzzi’s proposal.

5.4.1 Background

Let S be a finite subset of a topological space X. We call S the sample set. Let
Y = {�1,+1}, called the labels, and let H = {h1, ..., hT } ⇢ Y X be a finite set
of binary classifiers on X. Give H the discrete topology.

89

Definition 5.37. The sample presheaf Ŝ of S is the following functor:

Ŝ : Open(H) op ! Set

U 7! Ŝ(U) := {x̂ : U ! Y :: h 7! h(x), x 2 S}

U ⇢ V 7! resV,U : Ŝ(V)! Ŝ(U) :: x̂ 7! x̂|U

Each x̂ 2 Ŝ(U) captures the labels ht(xi) assigned by all classifiers in U to
the example xi 2 S.

Lemma 5.38. Ŝ does not satisfy the sheaf gluing axiom, but does satisfy the
uniqueness axiom.

Proof. It su�ces to consider a simple counterexample with S = {x, y}, H =
{h1, h2, h3} as below, and a cover U = {U = {h1, h2}, V = {h2, h3}}.

x y
h1 - +
h2 + +
h3 + -

Then Ŝ(H) = {x̂, ŷ}, Ŝ(U) = {x̂|U , ŷ|U}, and Ŝ(V) = {x̂|V , ŷ|V }. The
sections x̂|U 2 U and ŷ|V 2 V form a compatible family over U, since they agree
on U \ V = {h2}, but the glued function given by h1 7! �1, h2 7! +1, h3 7! �1
does not correspond to any element in Ŝ(H), since there is no s 2 S taking
those values in the table. So the gluing axiom fails.36

On the other hand, suppose there exists such a global section ẑ 2 Ŝ(H) for
some compatible family over U = {Ui}i2I . Further, suppose there exists another
such global section ẑ0 2 Ŝ(H) which restricts to the same local sections. Then
ẑ(h) = ẑ0(h) for all h 2 Ui. Since the Ui cover H, ẑ(h) = ẑ0(h) for all h 2 H,
therefore ẑ = ẑ0 in Ŝ(H), showing uniqueness.

In particular, each x̂ 2 Ŝ(U) is defined by an equivalence class [x] ⇢ S, where
the equivalence relation is x ⇠U x0 i↵ h(x) = h(x0) for all h 2 U , and any global
section over a compatible family {x̂i}i=1,...,k, if it exists, can be represented by
some x 2 [x1]\ ...\ [xk]. There is no global section precisely when [x1]\ ...\ [xk]
is empty.

From a machine learning perspective, however, the fact that x̂ 2 Ŝ(U) is
defined by an equivalence class of points is a problem. That is, Ŝ is throwing
away some important information about S: namely the multiplicity of examples
satisfying any classification scheme U . Below, we compose Ŝ with a distribu-
tion monad in order to capture this multiplicity (but secretly for another reason:

36One should view the failure of the gluing axiom not as saying something about S (e.g. it’s
not large enough) but as saying something about H. A failed gluing indicates that there is
behavior that an ensemble of hypotheses could achieve (or “simulate”?) which has not been
yet observed by the hypotheses, run individually.

90

AdaBoost maintains a distribution over S).37 Later, we will try out a simpler
functor, FR that directly counts the number of examples without normalizing
things into a distribution; this turns out to work better for purposes of coho-
mology. (Though I am not convinced this is the best way; it may be simpler to
pass to multi-sets. There may also be a more topological solution that retains
more information from X.)

Let R be a commutative semiring (typically R�0). Let

DR : Set! Set

A 7! DR(A) = the set of R-distributions over A

A
f

! B 7! DR(A)
DR(f)
! DR(B) :: d 7! [b 7!

X

f(a)=b

d(a)]

Even when Ŝ is a sheaf, DR�Ŝ may not be a sheaf: the gluing axiom does not
hold (ref. contextual models). However, the fact that DR is only a Set-valued
functor will be problem later, when we want to invoke cohomology.

Example 5.39. Let H = {h1, h2, h3, h4} and fix a cover

U = {{h1, h2}, {h2, h3}, {h3, h4}, {h4, h1}}.

Let S be a set of 10 points in X as in the graph below. Then S generates the
following (noncontextual) empirical model for U taking values in DR � Ŝ.

h3
+

�

h2

+ �

h1
+

�

h4

+ �

• •

••

•

•

•

• •

•
7!

(+1,+1) (+1,�1) (�1,+1) (�1,�1)
h1 h2 1/10 7/10 1/10 1/10
h2 h3 0 2/10 2/10 6/10
h3 h4 1/10 7/10 1/10 1/10
h4 h1 6/10 2/10 2/10 0

Figure 5.3: We are given a 10 examples x 2 S in X, as above. The dotted lines
represent hypotheses (in this case, axis-aligned hyperplanes) that classify part
of X as positive and part as negative. The topology of H then generates the
table to the right: each row of the table is a distribution, reflecting the locations
and proportions of the sample set S with respect to a set of hypotheses, i.e. an
element of the cover U.

37One way of interpreting an empirical model / global distribution 2 DR � Ŝ of is to take
it as an approximation of the original, “true” distribution on X (or X ⇥ Y), from which S

was drawn. It is an approximation in two senses: both in terms of accuracy/confidence (we
may have gotten unlucky with S) and in terms of precision (the regions marked by H cannot
capture the true shape of the distribution). Alternately (and I would argue more naturally),
we can take the empirical model / global distribution as a distribution on S itself, i.e. as an
assignment of (normalized) weights to each example in S “up to what H can distinguish”.
Indeed, this is what AdaBoost does: AdaBoost maintains a distribution Dt on S at each
boosting round t.

91

The distributions specified on each row of Example 5.39 then glue to form
the obvious global distribution on Ŝ(H), which has exactly 7 elements, corre-
sponding to the 7 regions in the graph with non-zero support.38

5.4.2 An analogy

Imagine a set of classrooms where students are taking practice exams. The
questions on the exam are all yes/no questions. In some classrooms there is
one teacher, t, and one student, h. In others, there are two students, h1 and
h2, and one teacher. In some rooms, there are only students. The students
can form study groups (of pairs, threes, etc.) in which they compare notes.
However, none of the students know the right answers, so the best they can do
is track which questions they agree or disagree on. Some questions are easy
for the students (or so di�cult and/or poorly-written that they shouldn’t have
been placed on the exam): every student agrees on them. Some questions are
hard for the students: 50% of the students choose yes and 50% choose no. The
teacher can also “compare notes”, but she does this by putting the answers up
on the blackboard so that everyone can compare themselves against the answers.

And the students aren’t monkeys: they’re not guessing randomly. They have
some sort of prior on the subject of the exam, though they may have di↵erent
(incorrect) understandings of the subject.

In this analogy, the practice exam is the sample set S, the “final” exam is
the input space X, poorly-written questions represent outliers in the data, the
teacher represents the true classification t = tS , the students are the hypotheses
h 2 H, classrooms are open covers U of H, and study groups are elements of
the cover Ui 2 U. Sections x̂ 2 Ŝ(U) correspond to sections (and sometimes
individual questions) on the practice exam, and compatible families of sections
{x̂i} 2

Q
Ŝ(Ui) represent artfully-designed questions—not necessarily on the

practice exam S!—that can tease out the di↵erences between di↵erent students.
Compatible families of distributions {di} 2 DR � Ŝ(U) represent sections of the
practice exam weighted by some criterion, e.g. the total number of questions in
that section or the number of questions that students get wrong.

The fact that students aren’t monkeys corresponds to the fact that hypothe-
ses in machine learning aren’t (usually) just maps [n] ! {�1,+1}. Just as a
student has a prior on the subject of an exam, so a hypothesis is defined on the
entire input space X of a sample set S; further, these hypothesis are usually
characterized by some structure built on the topology of X: e.g. axis-aligned
rectangles in R2, or hyperplane separators in Rn as in Example 5.39.

Below, I will discuss a conjectural distance function L̂ between compatible
families of sections. L̂ represents “learning”.

38The shaded cells represent regions of X where no s 2 S exists. That is: the local
distribution for {h2, h3} is not even defined on the region of X where h2(x) = +1 and
h3(x) = +1, since there is no such section ŝ 2 S({hi, hj}), since there is no s 2 S in that region.
Note also that some regions have 0 area, e.g the region {x 2 X : h1(x) = �1, h3(x) = +1} = Ø.
Again, these 0-area regions are not even assigned a probability (not merely probability 0), since
we are composing with Ŝ (or even X̂).

92

5.4.3 Cohomology

Following [3], compatible families of distributions live in the 0-th cohomology
group H0(U, DR � Ŝ(U). So we would like to construct the nerve N (U) of U and
the (Cech) cohomology of the presheaf DR � Ŝ with respect to U = {Ui}i2I . The
problem is that DR is not a presheaf of abelian groups.

To make the cohomology well-defined, i.e. to define addition and subtraction
on chains, we pass to an abelian presheaf FZ � Ŝ, where FZ is the functor

FZ : Set! Set

X 7! FZ(X) = {� : X ! Z : � has finite support}

X
f

! Y 7! FZ(X)
FZ(f)
! FZ(Y) :: � 7! [y 7!

X

f(x)=y

�(x)]

The finite sup-
port condition
is not neces-
sary here; in
practice S is
always finite.

We denote by |[�]| the section in FZ � Ŝ(U) which assigns to each x̂ the
cardinality of the equivalence class [x].

Example 5.40. Let X = S = {x, y, z}, Y = {�1,+1}, H = Y X , and U be
the set of all singletons in H. Then N (U) has |H| = 8 vertices, representing
each singleton in U, and no edges. In dimension 0, the corresponding cochain
complex has

C0(U, Ŝ) = Ŝ({h1})⇥ ...⇥ Ŝ({h8}).

Since each hi is a Boolean function on X = S, C0(U, Ŝ) has exactly 14 elements
(16 - 2 maps that are identically +1 or -1 on X). We think of each element as
a vertex labeled with a map hi 7! ±1.

Example 5.41. In the above example, let

U = {Ui}i=1,...,8 =

(
{h1, h2}, {h2, h3}, ..., {h7, h8}, {h8, h1}

)
.

As before, N (U) has 8 vertices labeled with the elements of the cover, and 8
edges. Then C0(U, Ŝ) = Ŝ({h1, h2}) ⇥ ... ⇥ Ŝ({h8, h1}) has between 17 and 20
elements depending on how the hi are ordered; each such element represents a
pair of maps hi 7! ±1, hj 7! ±1. C1(U, Ŝ) = Ŝ({h1})⇥ ...⇥ Ŝ({h8}) has exactly
14 elements, labeled with maps hi 7! to± 1.

Pick a family of functions ~� = (�1, ...,�8) 2 C0(U, FZ � Ŝ); each component
function �i can be thought of as a formal Z-linear sum of elements in Ŝ(Ui).

The coboundary operator �0 : C0(U, FZ � Ŝ) ! C1(U, FZ � Ŝ) acts on ~� and
� = U1 \ U2 2 N1(U) by

�0(~�)(�) =
2X

k=1

(�1)kresk(~�)(Ŝ@k�)

= res1(~�)(ŜU1)� res2(~�)(ŜU2)

93

where the restriction homomorphism res1 : FZ � Ŝ(U2) ! FZ � Ŝ(U1 \ U2) can
be thought of as distributing the sum �i 2 FZ � S(U2), and similarly with res2.

In other words, res1(~�)(ŜU1) is the number of examples counted by ~� in each
region of X, represented by x̂ 2 Ŝ(U1\U2) after “gluing” some regions together.
Just as in [3], the 0-dimensional cohomology classes H0(U, FZ � Ŝ) represents
compatible families of sections over Ŝ(Ui) for each element Ui of the cover.

One thinks of the sheaf FZ � Ŝ as a tool for quantifying the extent to which
di↵erent hypothesis sets disagree on regions ofX (which are approximated by S),

weighted by how important that region is according to ~�. In machine learning
terms, the sheaf allows us to quantify, using test data from S, how independent
each hypothesis is from any other.

The cohomology measures to what extent these families of formal sums dis-
agree with each other. The problem is that the empirical models / distributions
assumed in traditional machine learning are not contextual, so the higher coho-
mology, while present, is not interesting.39

5.4.4 Conjectures

A typical error bound (e.g. in VC analysis, or through margin-based methods,
or through compression) on AdaBoost looks like the following:

err(h) êrrS(h) +O

complexity(HA, T) + confidence(�)

!

where err(h) is the expected error (with respect to a fixed loss function) of the

combined hypothesis h = sign(
P

hi2H
↵ihi) = sign(~h · ~↵) output by AdaBoost,

êrrS is the empirical error with respect to S, HA is the hypothesis class output
by the weak learner A, T = |H| is number of base classifiers generated by
AdaBoost, and � > 0 is a fixed parameter in R.

The goal of this paper is to reproduce (and hopefully improve on) traditional
bounds on the expected error of AdaBoost and other ensemble methods. Tradi-
tional approaches to constructing the error bound focus on the complexity term,
but these approaches run into the bias-variance tradeo↵ discussed elsewhere in
the proposal: simpler concept classes can underfit the training sample, thus in-
creasing the empirical error êrrS , but more complex classes can also overfit the
data, raising the expected error err on all of X. The strategy here is orthogonal:
enrich the notions of expected error and empirical error so that they naturally
carry a notion of e�ciency or “excess information” [10] between the base clas-
sifiers in H. In other words, we want to redefine err and êrrS from functions on
single hypotheses to functions on systems of hypotheses, while preserving the
general format of traditional error bounds:

err(H, ~�) êrrS(H, ~�) +O

✓
complexity(HA, |H|) + confidence(�)

◆

39There may, however, be a link between contextual models and models of active learning,
in which learners can choose to explore di↵erent parts of the sample space.

94

where ~� = (�1, ...,�k) 2
Q

FZ � Ŝ(Ui) is a compatible family of sections with
respect to a given cover of H. (Note: while ~↵ can be thought of as a weighted

sum of h 2 H, ~� is a family of weighted sums on s 2 S “with respect to H”.)

In order to be useful, err(H, ~�) should upper bound the expected error err(h)
of the combined hypothesis h = sign(

P
i
↵ihi).

For a given sample S, we introduce “error” by simply adjoining to H (and
to U) a partial function t : X ! Y :: x 2 S 7! oracle(x), representing the
true classification of x 2 S.40 Let Ht = H [{t} and Ut = U [{t}. Given the
definition of Ŝ, it does not matter that t is a partial function on X, so long as
it is defined on S.

Definition 5.42. The error surface of a fixed loss function41 L is the graph in
HA ⇥ R of the empirical error êrrS(h), where êrrS(h) =

P
s2S

L(t(s), h(s)).

Many learning algorithms A (e.g. decision trees, or neural networks, or
SVMs), identify HA with a parameter space, usually some subset of Rn. n may
be very large, depending on the algorithm and the dimension of the input space
X. In what follows, we will assume that HA ' Rn.

Definition 5.43. For a set of base hypotheses H and a cover U, the error nerve
E(U) of U with respect to t is the cone of the nerve of U, letting t be the vertex
of the cone.

Simplices corresponding to facets of the cone do not have a natural inter-
pretation, as in the rest of the nerve, as intersections between their vertices: for
example, Ui and {t} may have empty intersection. We need to define a slightly
modified version of the (Cech) cohomology of a presheaf with respect to a cover
U.

Definition 5.44. The weak error cohomology Hn

err(Ut, FZ � Ŝ) is the Cech coho-
mology of the following cochain complex: on p-simplices � in N (U), p-cochains
are defined as usual: as Z-formal sums of sections in FZ � Ŝ(|�|). On simplices
introduced by the cone construction, a p-cochain valued in FZ � Ŝ is a Z-formal
sum of just those sections which are correctly classified (according to t) by at
least half 42 of the hypotheses in |�| = Ui0 \ ... \ Uip�1 .

40Sometimes this true classification is introduced with the distribution, i.e. S is considered
as a finite subset of X ⇥ Y drawn according to a distribution on X ⇥ Y . My impression is
that this is a piece of technical and notational convenience rather than a thought-out position.
Conceptually, the mechanism for drawing an X “from nature” and then labeling it with some
y 2 Y are distinct.

41In classification, a loss function is a function of the form L : Y ⇥Y ! R which represents
the cost of a bad prediction. There is no precise definition of a loss function, though there
is a standard list of common loss functions. For example, the fundamental loss function is
the zero-one loss L0�1(y, y0) = �y(y0), where �y is the Dirac delta function on y. (We say
fundamental because other loss functions are sometimes thought of as surrogates for L0�1.)
However, L0�1 is non-convex and non-smooth, so it is often better to approximate it using
other loss functions which are continuous, convex, and more computationally tractable.

42This is inspired by AdaBoost’s weak learning assumption, but I still need to work out an
example.

95

The error nerve is meant to serve as a simplicial / combinatorial approxima-
tion of the error surface and thus, by extension, of the empirical error êrrS(h).
So the immediate technical objective is to define a method of embedding the
error nerve—or a similar construction—into HA ⇥R in order to verify that the
nerve does, indeed, approximate the surface.

Conjecture 25. Fix a cover U over H. Then every loss function L induces a
metric

L̂ : U⇥ U! R
between elements of the cover U such that if Ui \ Uj is non-empty, then

L̂(Ui, Ui \ Uj) + L̂(Uj , Ui \ Uj) L̂(Ui, Uj).

In particular, L̂ should commute with “taking compatible families” in the fol-
lowing sense: for any compatible family of sections ~� over U in FZ � Ŝ, there
exists a unique family of hypotheses h�i over the Ui, such that

L(h�i , h�i|Ui\Uj
) + L(h�j , h�j |Ui\Uj

) L(h�i , h�j).

Intuitively, the loss between two singletons {hi}, {hj} should be

L̂({hi}, {hj}) =
X

s2S

L(h1(s), hj(s)),

while the loss between two arbitrary elements of the cover Ui, Uj should be
thought of as the total loss incurred over S between two combined hypotheses

hi =
X

hk2Ui

↵khk

hj =
X

hk2Uj

�kh.

The metric L̂ will help us construct the requisite embedding into HA ⇥ R.

Conjecture 26. Let n be the dimension of HA as a real vector space and
fix a metric L̂ on U as above. Then L̂ induces an embedding L̂t of the error
nerve E(U) into Rk, where k n+1 and k is some function of the homological
dimension of E(U), taking values in FZ � Ŝ.

One imagines stretching out the cone in the error nerve based on the L̂-
distance between each vertex of N (U) and the vertex representing the true
hypothesis t, which “pulls” the rest of the error nerve toward it.

Other ideas:

1. Conjecture: U is “maximally diverse” relative to H when it is maximal
with respect to the VC dimension; adding one more hypothesis to U would
increase the VC dimension. What is the minimum size of H so that H is
able to distinguish all points in S? This is a marker of e�ciency (but also
of diversity).

96

2. Conjecture: weight adaptation can be captured by morphism of sheaves.

3. Turning a presheaf that fails uniqueness into a sheaf amounts to com-
pression; we throw away the extra global sections (though, in actuality,
throwing away global sections may not mean throwing away examples but
restricting to sample sets of ‘maximal’ complexity). So compression should
correspond, in the right setup, to sheafification. We’ll discuss this further
in Section 5.5.

4. What about “focusing attention” on a given regions of the input space X,
as in active learning?

5. Typically, we call a mechanism that quantifies the di↵erence between a
presheaf and a sheaf a cohomology theory. Where did this statement come
from; is it accurate??

6. I wonder if you can also think of certain models as complicated embeddings
themselves, e.g. whether a generic word embedding to Euclidean space
or even a fancier one like a Poincare embedding to hyperbolic space (in
order to capture not just similarity but also hierarchical relationships, as
in https://arxiv.org/pdf/1705.08039.pdf: “embeddings of symbolic
data such that their distance in the embedding space reflects their semantic
similarity... In addition to the similarity of objects, we intend to also
reflect [a presumptive latent hierarchy between symbols] in the embedding
space.”). If so, then can you “clamp” that embedding with respect to the
particular embedding into the error surface, so that as one changes, the
other does as well?

For these reasons and motivated by the discussion in Section 2,
we embed symbolic data into hyperbolic space H. In contrast
to Euclidean space R, there exist multiple, equivalent models
of H such as the Beltrami-Klein model, the hyperboloid model,
and the Poincar half-plane model. In the following, we will base
our approach on the Poincar ball model, as it is well-suited for
gradient-based optimization.2 In particular, let Bd = {x 2 Rd :
||x|| < 1} be the open d-dimensional unit ball, where ||·|| denotes
the Euclidean norm. The Poincaré ball model of hyperbolic
space corresponds then to the Riemannian manifold (Bd, gx),
i.e., the open unit ball equipped with the Riemannian metric
tensor

gx = (
2

1� ||x||2
)2gE

where x 2 Bd and gE denotes the Euclidean metric tensor.
Furthermore, the distance between points u, v 2 Bd is given as

d(u, v) = arcosh(1 + 2
||u� v||2

(1� ||u||2)(1� ||v||2)
)

97

https://arxiv.org/pdf/1705.08039.pdf

7. What about combinatorial explosion in the solution space H; we need to
reduce the search space in order to get reasonable algorithms by putting
in a bunch of di↵erent priors. So, can the way we think about H a bit
di↵erently using the formalism above; can it give us better ways of rea-
soning about / organizing all the priors we need? Current solutions build
communities of agents to find these solutions: deep reinforcement learning
looks at this question, e.g. Gauthier and Mordatch 2017, to create an end-
to-end policy architecture for language learning: compositional strategies
in a structured environment for compositional goals.

5.5 Sample compression schemes via cubical complexes

Originally I had hoped to build a direct homological interpretation of sample
compression on top of the characterization of maximum classes as cubical com-
plexes [93]. I wanted to find a way to glue together di↵erent concept classes
in a way that lets me extend useful invariants (such as VC dimension) across
gluings, modeled on the kind of operations one would expect to see in di↵er-
ential geometry (gluing of local charts) or algebraic geometry (gluing of a�ne
varieties). Explicitly, the idea was to associate a topological space (ideally a
complex of some sort) directly to a concept class, in such a way that the topol-
ogy of the space detects the VC dimension of the concept class. Then one could
add concepts to the class or glue together di↵erent concept classes, and study
the topology for clues to the VC dimension of the merged object. Similarly, one
should be able to decompose concept classes.

In particular, I hope to build some examples using not only maximum classes,
but objects called maximal classes : classes for which one cannot add a single
additional concept without increasing the VC dimension. Maximal classes are
very important in sample compression because, unlike maximum classes, we can
embed all other concept classes within a maximal class of similar VC dimension.

My initial e↵orts failed in spectacular fashion, so I developed the strategy
involving AdaBoost, above. This section is just a placeholder until I have more
results in the previous section.

5.6 Invariant methods for machine learning

The original goal of all this was to develop means for combining and compos-
ing di↵erent learning algorithms. But what this really means, in order to be
interesting, is to combine and compose them over multiple domains. So far,
we have talked about adding base classifiers to create more complicated, more
expressive models of a single domain, but after all, this is not quite the same
thing as creating a complex model of the world. A parallel, more applied part
of my research, e.g. in [103, 107, 108], concerns information integration over
complex systems. Typically, this means integrating information and integrating
models by hand across di↵erent domains X1 and X2. Category theory helps,
but even then you cannot get out of doing most things by hand.

98

On the other hand, can we learn the right models from data? In practice,
this is impossible with current techniques: there just isn’t enough data. X1⇥X2

is much more complicated thanX1 andX2 alone. For a similar reason, it’s rarely
feasible to just add base classifiers across domains as one does in boosting, at
least without giving up all guarantees on the expected error.43

After finishing the research involved in the previous two papers, I would like
to begin the final portion of my thesis by asking: so what can we say about the
error in such composite, complex systems?

43Nonetheless, the human brain does create complex models of the world, and it does seem
to add or glue the output of many separate learners into a coherent model.

99

A Sheaf theory for distributed systems

I am still writing up some whiteboard notes; in the meantime I’ve merely ap-
pended some of the definitions leading up to structure presheaves in [10]. More
to follow!

Let Stoch be the category with objects vector spaces of real-valued func-
tions and morphisms stochastic maps a.k.a. conditional probability distribu-
tions.51 Fix a functor V : Set ! Stoch, so V X is a vector space of functions
{� : X ! R} equipped with Dirac basis {�x}x2X and V (f) : V X ! V Y
is a stochastic map commuting with V . Interpretation: V (f) is a matrix of
conditional probabilities p(y|x).

The following definition is doing most of the key work:

Definition A.2. Given a surjective stochastic map m : V X ! V Y , it has a
stochastic dual m# = m⇤

� renorm : V Y ! V X satisfying

(V Y)⇤ (V X)⇤

(V Y)⇤ R

m
⇤

!Xrenorm

!Y

where !X is the terminal map to R in Stoch (so !#
X

is the uniform distribution
on X) renorm is the map which makes the columns of renorm �m# sum to 1,
i.e. so m# is an honest stochastic map.

Note the major simplifying assumption! Interpretation: given a conditional
probability distribution m ⇠ p(y|x), the stochastic dual m# computes the pos-
terior p(x|y) assuming the uniform distribution on Y .

Definition A.3. A distributed dynamical system D consists of a directed graph,
an input alphabet Sl and an output alphabet Al associated to every vertex l of
D, and a state transition matrix ml : V Sl ! V Al associated to every vertex,
called a mechanism.

We can define two categories based on any such D:

51I think the idea is that this version of Stoch is a little easier to work with compared to
Lawvere’s original version:

Definition A.1. The category Stoch of stochastic processes is defined by the following data:

1. objects are measurable spaces (A,⌃A) of sets A with a �-algebra ⌃A

2. morphisms P : (A,⌃A) ! (B,⌃B) are stochastic kernels, i.e. functions P : A⇥⌃B !
[0, 1] that assign to (a,�B) the probability of �B given a, denoted P (�B |a)

3. composition Q � P : A ⇥ ⌃C ! [0, 1] of P : (A,⌃A) ! (B,⌃B) and Q : (B,⌃B) !
(C,⌃C) is defined by

(Q � P)(�C |a) =
Z

b2B
Q(�C |b)dPa,

i.e. marginalization over B

117

Definition A.4. The category of subsystems Sys
D

on D is a Boolean lattice
with objects sets of ordered pairs of vertices in D, C 2 2VD⇥VD , with arrows
given by inclusion.

The category of measuring devices MeasD onD has objects HomStoch(V AC , V SC)
for C 2 2VD⇥VD , with arrows given by maps of the form

r21 : HomStoch(V AC2 , V SC2)! HomStoch(V AC1 , V SC1)

Definition A.5. The structure presheaf of a distributed dynamical system D
is a functor

FD : Sys
D

op
! MeasD

C 7! Hom(V AC , V SC)

i12 : C1 ! C2 7! r21 : HomStoch(V AC2 , V SC2)! HomStoch(V AC1 , V SC1)

from a category of subsystems of D to a category of measuring devices whose
objects are hom-spaces of stochastic maps.

Lemma A.6. The structure presheaf satisfies the gluing axiom but not the
uniqueness axiom of sheaves.

Descent in the structure presheaf F is not unique; there are many distribu-
tions that satisfy the constraint. This is because the restriction operator is not
really function restriction: it’s marginalization.

B A very brief review of probabilistic program-
ming

Other names for probabilistic programming: probabilistic databases (from Suciu
et al.), and probabilistic logic programming (Poole and Sato). And a few related
subjects under the rubric of “automating machine learning”:

1. automatic statistician

2. Bayesian nonparametrics

3. Bayesian deep learning

4. Bayesian optimization

5. computational resource allocation

6. large-scale inference

Much of this review is drawn from https://web.cs.ucla.edu/~guyvdb/
talks/UAI14.pdf.

The grand challenge in this field is “lifted inference”. For example, we want
to compute the number of infected people in the population, from knowing the

118

https://web.cs.ucla.edu/~guyvdb/talks/UAI14.pdf
https://web.cs.ucla.edu/~guyvdb/talks/UAI14.pdf

number of sick people and the probability of contact between people in the
population and the sick people. Creating such an algorithm is analogous to
proving a resolution theorem in traditional logic programming.

A probabilistic program considers all the possible worlds of its program:
what saves it from having to enumerate all possible worlds is that only finitely
many possible worlds—a kind of compression?—are su�cient to answer any
given ground query.

B.1 Learning in probabilistic programming

Learning in probabilistic programming is not very di↵erent from how it works
in standard graphical models. It is just about sampling.

Pr(fact) =
#(fact = true)

all
.

C A very brief review of homotopy type theory

The two key insights leading to the development of homotopy type theory
(HoTT) were

1. in 2005, Awodey and Warren’s interpretation of Martin-Löf type theory
(MLTT) as a model category (see Section 3.4) where a type X was a kind
of space—in particular, an 1-groupoid—and the identity type of X was
the path object of X,

2. in 2009, Voevodsky’s observation that one particular model of MLTT (the
category sSet) satisfied an important additional axiom called univalence.

Let =U be the identity relation on types in a universe of types U and let '
be equivalence of types. Then the univalence axiom states that

(A =U B) ' (A ' B)

i.e. the identity relation is equivalent to the equivalence relation. Recall that the
identity type ofX is interpreted as the path object ofX, so that A =U B signifies
a path from A to B in the universe U . Univalence states that equivalences
determine paths in the universe of types.

We have something of the form

types
L99
! 1-groupoid

'
! spaces up to weak eq.

To see why univalence is a rather strong assumption, consider that one half
of the statement is essentially the claim that “isomorphic objects are identical”.
Of course working mathematicians regularly conflate isomorphism with identity,
but we secretly know that two isomorphic objects can stand for very di↵erent
conceptual entities (e.g. an abstract group and a permutation group). To say

119

that identity and isomorphism are actually the same seems, on one level, to be
an extraordinary loss.

To see why univalence is a rather natural assumption, consider that we are
really expanding the notion of identity (rather than collapsing the notion of
equivalence) so that it has a finer notion of structure [7]. In e↵ect, this means
that we ignore non-structural notions of equality. All mathematical objects are
to be regarded only in terms of their structure—no more secrets.

Perhaps most importantly from a practical perspective, univalence makes it
much easier to define and work with higher inductive types (like circles, pull-
backs, smash products, higher homotopy groups, cohomology, etc.), which then
open up a vast array of type-theoretic approaches to homotopy theory and
homotopy-theoretic approaches to type theory.

The chief reference is the HoTT book [112] written at the Institute for Ad-
vanced Study in 2013.

C.1 Very brief review of type theory

Given types A,B,C one can write a : A to mean that a is a term of type A. This
is a declaration or judgment, as opposed to a proposition. One can then form
types A⇥B, AB , A+B, as well as function types A! B (so f : A! B means
that f is a term of the function type A! B). All these types live a universe of
types U , which is not a type for reasons going back to Russell’s paradox.

A dependent function type or dependent product
Q

x:A B(x) is a function
B : A ! U that returns types in the universe of types U . So morally it’s a
family of types. In a HoTT-flavored proof the dependent function will often be
read as “for all x : A, B(x) is true”, so I like to call it the “constructive 8”: not
only is B(x) true, but we can give you the function demonstrating it for every
B(x).

Its dual, the dependent pair or dependent coproduct
P

x:A B(x), is also a
family of types modeled on a function B : A! U , except in this case elements
are not functions B(x) but pairs of the form (a, b) for a : A and b : B(a). Since
the dependent pair gives us the specific element in B(a) that “satisfies” B, we
can think of it as a “constructive 9”.

Given a, b : A, we have the identity type IdA(a, b), where each element
p : IdA(a, b) represents a proposition “a = b”—in fact, a proof of “a = b”. (The
= symbol, sometimes written =A, is better understood as “is similar according
to A”.) Moreover, we have a stack of identity types: given p, q : IdA(a, b), we
have another type IdIdA(a,b)(p, q). Whereas these types were among the more
mysterious entities in vanilla Martin-Löf type theory, in homotopy type theory
these have a direct interpretation as the (higher) path objects of A. The original
contribution of HoTT lies in its interpretation of such identity types (more on
this later), which leads directly to the motto: “types are 1-groupoids”.

As is plain from the above definitions, homotopy type theory is intimately
connected to logic, and it can be quite fun (and enlightening) to see that all
our magical constructions in topology have such plain logical realizations. For
me, it was a little shocking to realize that a “predicate” B(x) on A could be

120

read as a fibration (where the path lifting property of a fibration corresponds
to the ability to “transport” predicates between identical terms in A) and thatQ

x:A B(x) and
P

x:A B(x) could be read, respectively, as the space of sections
and the total space of the fibration.

Example: S1

The existence of higher path structure can be exploited in the construction of
higher inductive types, which intuitively are types where we specify generators
not only for the terms but also for the higher paths. This can give us nice,
synthetic definitions. For example, the circle S1 is generated by a point ⇤ 2 A
and one nontrivial path p : IdA(⇤, ⇤)—in particular, all higher paths are trivial,
so there is no higher homotopy, as expected.

C.2 Propositions as (some) types

A type P is a mere proposition if any two elements of P are equal, e.g. the type
IdP (x, y) is inhabited for all x, y : P . In other words, P , is (�1)-connected; the
idea is that P is true if and only if it is inhabited. Mere propositions are also
called subterminal objects or h-propositions; the language suggests that while
any type can be regarded as a proposition (through a process called proposi-
tional truncation || · ||�1 or (�1)-truncation, which allows us to recover tradi-
tional logic as a special “trivial case” of the type theory), in general there is
quite a bit more going on.

For example, a type S is a set (or a 0-type) if for any terms x, y : S, IdS(x, y)
is a proposition. In other words, S is path-connected. There is a corresponding
notion of 0-truncation for sets.

We can keep going up to obtain an inductive hierarchy of n-connected types,
where a type A is an n-type if for all x, y : A we have idA(x, y) is an n � 1-
type. So a (mere) proposition is a �1-groupoid, a set is a 0-groupoid, a normal
groupoid is a 1-groupoid, and so on. For each n-type there is a corresponding
notion of n-truncation, denoted || · ||n, that forgets about or equates all the
higher path structure above level n.

Crucially, such n-truncation should be thought of as a method of abstraction.
Types are already abstract entities in a strong sense, but what makes them useful
and powerful is that we can articulate a clean way of comparing our abstractions
“on the same level”.

C.3 Univalent foundations

At its core, type theory is based on the idea that we can move from an abstract
entity (given by its essential i.e. universal properties) to instances; the instances
are representations of the types52 where to be an abstract entity is to have many
individual representatives that can “do the work”. Identity types make perfect

52So this goes in the reverse direction of the usual in learning, in which we construct abstract
representations of objects in the data.

121

sense in this framework, since we are considering the relationships between
di↵erent individuals. By contrast, ZF(C) and other extensional frameworks
hide the abstract nature of mathematical concepts.

But as Marquis [70] noted, abstractness for mathematicians is more of a
epistemological characterization, rather than an ontological characterization.
Mathematical abstraction follows a principle of invariance: it is based on ex-
tracting some criterion of identity: isomorphisms for groups, isometry for metric
spaces, equivalences for categories. There is often a temporal delay in this crite-
rion of identity, e.g. Hausdor↵ presents topological spaces in 1914 and 10 years
later Kuratowski defines homeomorphisms, but the point is that there is some
sort of method for constructing and characterizing the abstract entities, usually
some sort of invariant method.53 Groups, rings, fields, metric spaces, topologi-
cal spaces, Banach spaces, categories, etc. are all abstract entities in this sense.
A type X, if we take the entire head-to-toe 1-groupoid picture of the type, is
just an abstract entity in this sense: something built out of a far more powerful
criterion of identity that allows comparison on many di↵erent levels of identity
(by n-truncation), not merely via set-theoretic predicates.

The univalence axiom is precisely such a principle of abstraction. Recall
that univalence states that

(A =U B) ' (A ' B).

To say that identity is equivalent to equivalence is to say that once you have
abstracted properly, it is possible to identify what was previously seen as being
di↵erent.

Question 30. Work in HoTT has obvious implications to homotopy theory
and type theory, but there is another direction we can take it. As Voevod-
sky suggested [?], one of the aims of the univalent foundations program is to
develop a “natural language” of mathematics which would be easily computer-
checkable, thus allowing mathematicians to guarantee the correctness of their
proofs. Unfortunately, existing proof assistants like Agda are far away from be-
ing practically useful except to specialists in formal mathematics; coding proofs
of even “trivial” propositions like 2 ' Aut(2) is incredibly tedious. (That said,
I have no personal experience with Coq, the other major proof assistant in use.)
How can they be made more useful; how can we design a “proof assistant” that
is as indispensable to mathematical practice as, for example, LaTeX? Is formal
verification even the right value proposition? Clearly HoTT has some answers,
but not all of them. These questions broach a much deeper subject, including
what I think is simultaneously the most important, most interesting, and most
overlooked question in the foundations: how do mathematicians (i.e. people)
actually do mathematics?—where do conjectures come from?

53Wollheim uses types to construct artistic ontologies in much the same way: what is a
book? What is a painting? It comes down to some criterion of comparison!—along with a
“construction principle.”

122

D Topological data analysis

Given a finite metric space X, one way of clustering points in X is to define a
parameter ✏ such that {x0, x1, ..., xn} = A are in a cluster if d(xi, xj) < ✏ for all
xi, xj 2 A. (This is called single-linkage clustering.) Then the 0-th persistent
homology of X is a summary of the clustering behavior under all possible values
of ✏ at once. Suppose that members of X are drawn from some manifold M
according to some distribution; then the persistent homology tells us something
about the shape and connectivity of M which is robust to noise.

Persistent homology is the main tool in topological data analysis (TDA), a
discipline of applied topology which seeks to use topological tools like homotopy
and homology to extract qualitative geometric information from large, high-
dimensional data sets. The coarseness of the invariants is thought to be an
advantage in such data, where often we do not have a good interpretation of
the metric or the basis.

There are others tools in TDA, some of which we will review. Singh’s Map-
per algorithm [100], for example, is a method of “partial clustering” based on
the homotopy colimit construction. Blumberg and Mandell [12] describe an
approach to quantitative homotopy theory that applies persistent homology to
the contiguity complex (understood as some approximation of [X,Y]) of maps
between two simplicial complexes.

D.1 Persistent homology

The following definitions are slightly modified from [19].

Definition D.1. Let C be any category, and P be a partially-ordered set. We
regard P as a category in the usual way, i.e. with object set P and a unique
morphism from x to y whenever x y. Then a P-persistence object in C is a
functor � : P ! C.

We denote the category of P-persistence objects in C by Ppers(C).

The key technical and practical example is that of N-persistence simplicial
complexes, which are functors � : N ! SimpComplex. Given a finite metric
space X (representing our data) and any subset V ✓ X, consider the Cech
complex C(V, ✏) for ✏ 2 N, e.g. the nerve of the covering obtained by open balls
of radius ✏. Since C(V, ✏) ✓ C(V, ✏0) for ✏ ✏0, this defines an N-persistence
simplicial complex, which we may regard as a filtration K of simplicial com-
plexes. Passing to the associated chain complexes gives us an N-persistence
chain complex.

Intuitively, the idea of persistent homology is to consider the simplicial in-
clusions Ki

! Ki+1 and the corresponding image of H⇤(Ki) in H⇤(Ki+1); this
will give us the desired behavior of homology as we vary ✏. The actual compu-
tation of the persistent homology will return a set of intervals corresponding to
the appearance and disappearance of simplices as ✏ increases in (integral) value
from 0.

123

Figure D.1: The persistence barcode of a complex. Image copied from [41].

Denote the ✏-persistent k-th homology of the i-th simplicial complex Ki as

Hi,✏

k
:= Zi

k
/(Bi+✏

k
\ Zi

k
).

This is well-defined since both Bi+✏
k

and Zi

k
are subgroups of Ci+✏

k
, so their

intersection is a subgroup of Zi

k
. For computational reasons we do not have space

for here [123], we will always use field coe�cients, so the persistent homology
groups are actually F -vector spaces, and may be computed by standard means
[31]. To obtain the desired summary, we notice that an N-persistence F -vector
space can be understood as a (non-negatively) graded F [t]-module, which has
a nice structure theorem:

Theorem D.2. Let M⇤ denote any finitely-generated non-negatively graded
F [t]-module. Then there are integers {i1, ..., im}, {j1, ..., jn}, {l1, ..., ln} such that

M⇤
⇠=

mM

s=1

F [t](is)�
M

(F [t]/tlt)(jt)

Thus we can associate to each graded F [t]-module a set of ordered pairs
(i, j) with 0 i < j 2 (Z [1)—the interval (i, j) describes a basis element for
the homology starting at ✏ = i and ending at time ✏ = j � 1. The set of such
intervals will be finite since our graded F [t]-module is finitely-generated, since
our original simplicial complex was finite.

There are ways of extending the theory to R-persistence objects via cer-
tain mappings from N to R, or of replacing Cech complexes with Vietoris-Rip
complexes or weak witness complexes (which have a built-in notion of approx-
imation). Their theory is not substantially more interesting than that of N-
persistence, so we will not review them here.

124

Question 31. Is there much higher-dimensional topological structure in actual
scientific data? Even if yes, it’s di�cult to interpret the meaning of that high-
dimensional structure.

Instead of asking whether it or not it is there, we might instead talk about
how to promote or look for situations where there is likely to be higher-dimensional
structure. We can talk of a “phase transition”. In percolation theory, the main
result is the existence of a “critical probability” at which the problem flips from
a situation of no-paths to one of many-paths. This result is not well understood
in higher dimensions—in particular, does Poincaré duality still hold?

D.2 Persistent cohomology

Notes from Perea’s talk on April 22 [?]: persistent cohomology is about using
the shape of data to choose a good coordinate scheme. First, observe repre-
sentability of cohomology, e.g. H1(X;Z) = [X,S1]. So by taking a cohomology
class, we have a map from our data into S1. What about projective coordi-
nates? E.g. H1(X;Z2) = [X,RP1] !i⇤ [X(1),RP 2 for i : X ! X(1)? The i⇤

is the dimensionality reduction to projective coordinates (recall, PCA works on
projective space)!

Examples H1(RP 2;Z2).
Example: H1(T ;Z2).
Upshot: every time you have a cohomology class on your data in dimension

1 to Z2, you get a map from that data into RP1, e.g. projective coordinates,
then you can do dimensionality reduction.

Example: images of a line in a white box, parameterized by ✓ and r. [Bound-
ary detection... seems very similar to Gunnar Carlsson’s example in the AMS?]
This type of data sets benefits from being put into projective coordinates.

Bad thing about Brown Representability : tends to collapse all your data to
0 (bad if you want to do data analysis). Way you fix it: consider the “harmonic
cocycle” (see work by ...). The harmonic representative tends to “spread out”
the points a bit better. Use of line bundles: better able to spread out the
points for computational purposes. Having F line bundles is the same as having
cohomology classes with sheaf cohomology coe�cients. Point is the cohomology
is something we can compute, gives line bundles, and line bundles have better
properties when we write down the classifying maps (see Perea’s diagram). It’s a
better map and in the end they’re the same map. (Examples: real and complex
case: story in terms of transition functions, change into story about an exact
sequence of sheaves (Z! C ! C

⇤) called the exponential sequence.)
Upshot: shape-aware dimensionality reduction.

D.3 Mapper

Recall that clustering is the finite case of finding connected components. In
topology, one general approach to finding connected components is to analyze
quotients of spaces as relations in a larger space. For example, instead of study-
ing X/A, one enlarges the space X to a larger space X 0 = X [CA in which A

125

is contractible, where CA is the cone over A attached at A. Then the quotient
X/A is X � A [⇤ (the vertex of CA), while the ‘transition’ part CA encodes
the topology of the quotient.

This transition part is important to keep track of, since it will often happen
that we want to use homotopy types to build a space, but our gluing and
quotient constructions depend on features of spaces which are not invariant
under homotopy equivalence. For example, we can use two disks to construct a
sphere, but clearly two points cannot be glued to make a sphere, even though the
disks are contractible. The problem is that the quotient construction where we
glue the boundary of the disks depends on having an inclusion (more precisely,
it needs a cofibration; something with the homotopy extension property).

The moral is that you want to fix constructions like gluings and quotients
by better ones which depend only on the homotopy type of the space, making
it much easier to study the resulting space. This is just the idea behind a
homotopy colimit, which “glues along homotopies”.

Definition D.3. The homotopy colimit of a (gluing) diagram D : J ! Top is
the geometric realization of its simplicial replacement. That is,

hocolim D = |srep(D)|

Sometimes we will write hocolimJD to remind us of the indexing category.

Recall that the simplicial replacement of a gluing diagram D is a simplicial
complex whose simplices track how the various spaces get glued; vertices are
the spaces, edges are the morphisms, faces are compositions of two morphisms,
3-simplices are compositions of three morphisms, and so on, while the face
and degeneracy maps are obtained by indexing the morphisms and identifying
simplices by their common indices.

Simplicial replacements of diagrams in Top are, essentially, special cases of
nerves, which construct simplicial sets from a diagram in any small category.
This is the reason that Stovner [105] describes Singh’s Mapper algorithm [100]
as a homotopy colimit, since the topological content of Mapper comes down to
constructing the nerve of a diagram in TopCov (the category of topological
spaces with associated coverings). Specifically,

Mapper(f�1(U)) := N(C(f�1(U)))

where f : X ! Rn is a filter function, U is a cover of Rn, and C indicates an
arbitrary clustering method (this can be thought of as a way of passing to a
subcover).

In actual experiments, the filter function is often a function to R like the k-
nearest neighbor distance, the eccentricity, or the graph Laplacian, all of which
give some sort of geometric characterization of the point. The choice of cover
is even important, and is usually determined according to two parameters: the
typical size of a set in the cover and the desired percent-overlap between sets in
the cover. The choice of clustering method is usually insignificant.

126

Figure D.2: Partial cluster using a 2-nearest-neighbor distance filter on 3D data,
grabbed from Python Mapper [?]. Can you guess what the original shape was?
(Hint: it rhymes with ‘bat’.)

Functorial clustering

The following definition is from [19].

Definition D.4. A clustering algorithm is functorial if whenever one has an
inclusion X ! Y of point clouds, i.e. a set-map preserving distances, then the
image of each cluster constructed in X under f is included in one of the clusters
in Y , so that we have an induced map of sets from the clusters in X to the
clusters in Y .

The clustering method used by Mapper is functorial in the sense above, since
any clusters formed by the clustering method will be contained in the clusters
that would have been formed had we applied the standard clustering method to
the original (unfiltered) data.

However, the underlying idea of functorial clustering has applications far
outside Mapper. Carlsson suggests a link from functorial clustering (think of
the functor ⇡0(X) from Top to Set) to étale homotopy theory, and suggests
several related definitions of clustering functors by varying the morphisms of
their domain, the category of finite metric spaces.

127

D.4 Quantitative homotopy

TBD. Develop the connection to spectra?

128

“It now seems clear that the way to investigate the subtleties of
low-dimensional manifolds is to associate to them suitable infinite-
dimensional manifolds (e.g. spaces of connections) and to study
these by standard linear methods (homology, etc.).” - Atiyah

E TQFT

This section summarizes some ongoing discussions with Yiannis Vassopoulos on
applications of topological quantum field theories (TQFT) to neural networks.

E.1 Very brief review of TQFT

The following definition is from Atiyah [6].

Definition E.1. A topological quantum field theory (TQFT), in dimension n
over a ground ring ⇤, consists of the following data: (1) a finitely-generated ⇤-
module Z(⌃) associated to each oriented closed smooth n-dimensional manifold
⌃ and (2) an element Z(M) 2 Z(@M) associated to each oriented smooth (n+1)-
dimensional manifold (with boundary) M , subject to the following axioms:

1. Z is functorial with respect to orientation preserving di↵eomorphisms of
⌃ and M ,

2. Z is involutory, i.e. Z(⌃⇤) = Z(⌃)⇤ where ⌃⇤ is ⌃ with opposite orienta-
tion and Z(⌃)⇤ denotes the dual module,

3. Z ismultiplicative, i.e. Z(⌃1[⌃2) = Z(⌃1)⌦Z(⌃2) for ⌃1 and ⌃2 disjoint.

Remark E.2. The multiplicative axiom (3) should be compared to the additive
axiom of a homology theory, i.e. H(X1 [X2) = H(X1) � H(x2) for disjoint
spaces. It says, in essence, that Z(M) can be computed in many di↵erent ways,
by “cutting M in half” along any ⌃.

In the context of QFTs, n is usually 4.
To appreciate what is going into this definition, it helps to realize that our

n-dimensional TQFT is trying to represent (in the sense of a functor to Vect)
a hom-category nCob of (n + 1)-dimensional oriented cobordisms between n-
dimensional manifolds [8]. The axioms above follow directly from the structure
of nCob. While the duality structure is important from an algebraic perspec-
tive, the higher geometry (what [8] calls the symmetric braiding) is determined
by the multiplicative structure, which articulates the rule for how to decompose
the dynamics of the cobordism, i.e. break it up along its ‘time’ dimension, com-
pute and verify the parts, then study their composition through some suitable
inner product structure that lifts to Vect.

So the dynamics are embedded in the hom-spaces of nCob. Conveniently,
our natural description of this hom-space is recursive, e.g. each object in nCob

129

gives a morphism in (n-1)Cob.54 A full algebraic picture of nCob should
collate all the data of these n-morphisms, which strongly implies that the natural
setting for TQFT should be n-categorical. Further, since the composition in
nCob is associative up to homotopy, we can pass to A1-categories, where the
associativity axiom for morphisms, f �(h�g) = (f �h)�g, is relaxed “up to higher
coherent homotopy”. That is, we regard the axiom as true so long as we can
homotope one of f, g, h to maps satisfying the axiom. In a more restricted but
more obviously convenient sense for TQFT, (linear) A1-categories are settings
in which we can study the homology of the hom-space between objects—in this
case, we assume that the hom-spaces have the structure of a chain complex
of linear spaces. So the usual A1-categories we will consider are categories
enriched (homotopically) over a category of chain complexes. A1-algebras are
A1-categories with only one object, corresponding to 1Cob.

Question 32. In dimensions 3 and 4, we have a zoology of Kirby moves—
blow-ups, handle-slides, slam-dunks—used to specify the relations (on the gen-
erators) of a TQFT. There are some standard explanations—one can point to
the theorems—for the di�culty in these dimensions due to work by Smale and
Thurston, but what is the n-categorical, hom-space explanation for what makes
them special?

As many have observed, an n-category version of a TQFT can be analyzed
as structures on certain directed graphs by interpreting the morphism diagrams
of nCob literally. In particular, Kontsevich and Vassopoulos [59] do this by
thickening a ribbon graph in order to construct a surface with boundary to which
the graph is homotopic. This surface is used to construct a di↵erentially-graded
PROP (a ‘products and permutations category’) with a particular structure,
and the Hochschild chain complex over this dg-PROP will have the structure of
a TQFT.

E.2 A few questions

Some first observations, from discussion with Vassopoulos.

1. Of course (the graph of) a feedforward neural network can be thought of
as an oriented 1-cobordism. In a perfectly näıve way, we can associate
to vertices of the network an A1-algebra structure (specified by their
incident edges) and “do TQFT”. It’s unclear how helpful this is, however.

2. Almost all neural networks learn by some form of convex optimization, so
it’s very natural to consider the error (hyper)surface of the neural net-
work as a way of analyzing the function. Recall that this hypersurface
is determined by the data X, the graph structure of the neural net, and
the particular loss function / optimization method. Following our strat-
egy for nCob, we can study the local optima of this hypersurface using

54In one manner of speaking, all TQFTs are built around this description, just as all ho-
mology theories are built around the recursive description of complexes.

130

Morse theory, and generate a category with objects the critical points and
morphisms the flow lines. In principle, it should be possible to use this
categorical description to give some algebro-topological structure on the
function space of all neural networks.

3. Recall the standard tree operad, which can be viewed as an algebraic
structure denoting ways to expand and compress the tree by ‘pasting in’
simpler and subtrees (in a way that respects associativity of the pasting
operation). Neural networks can be represented by operads if we think of
each layer as a node (instead of each neuron).

Question 33. The function space of all neural networks can be thought as the
concept space associated to a data space X, since these functions give classi-
fications of X. What are we doing when we introduce what is essentially a
homological structure (contingent on some choice of a finite sample set S ⇢ X)
on the concept space? Further, can we give a ‘tensorial’ description of this con-
cept space, e.g. one without the “prior geometry of assumptions about data”?
This description would be something like a knowledge representation, a big pic-
ture way of relating concepts with data. [This is all highly speculative. Does
any of this language even make sense?]

Question 34. If it is possible to study neural networks by TQFTs, can this
also lead to an axiomatization of a class of learning algorithms whose internal
structure is encoded by graphs? One supposes that the brain’s own “algorithm”,
if we can call it that, must lie somewhere in this class.

Question 35. Intuitively, operads o↵er a very convenient formalism for think-
ing about neurogenesis. It’s not clear, however, that they say anything about
the usual AI business of optimizing a loss function. Can operads help us design
invariants that characterize the behavior (output states) of the network in a
“qualitative” way, as we change its connectivity—i.e. as we add and subtract
not only single neurons but entire graphs and clusters of neurons?

E.3 Very brief review of neural networks

See the iPython notebook [neuPROP].
[Perspectives to add: Bayesian: take a distribution over the input, compute

a posterior belief of the weights [?], Boltzmann machine: simulated annealing
on a graph of neurons and weighted connections (think of these as “gated” tubes
in a thermodynamic system), quantum: hyperplanes as quantum measurement,
backprop as renormalization? [?], operadic perceptrons.]

131

F Localization

Question 36. Localization is a matter of restricting attention to a certain
aspect of a space; in particular, one can localize with respect to homology
with the appropriate functor. What are all the di↵erent notions of localization,
ordered in increasing di�culty?

We have already reviewed the idea of the localization of a ring in Section ??.

Of X at x.

Of a ring at U .

As sheafification. Categorically, the sheafification L is a functor L : PSh ! Sh that sends
any presheaf F : Cop

! Set (on a site (C, ⌧)) to a presheaf defined on
any U 2 C by

L(F)(U) = colim
w:Û!j(U)

PShC(Û , F)

where j(U) is the representable presheaf of U , Û is a sieve inclusion of a
covering family over U , and w denotes a morphism of sieve inclusions from
Û to j(U). The colimit is over all w 2 W̄ , where W̄ is the completion of
U under forming small colimits in the arrow category of PSh(C). We call
L(F) the localization of F .

As exact functor. [Localization as an exact functor, from nLab]

In general, localization is a process of adding formal inverses to an alge-
braic structure. The localization of a category C at a collection W of its
morphisms is if it exists the result of universally making all morphisms
in W into isomorphisms.

A localization of C by W (or “at W”) is a (generally large, see below)
category C[W�1] and a functor Q : C ! C[W�1] such that for all w 2W ,
Q(w) is an isomorphism; for any category A and any functor F : C ! A
such that F (w) is an isomorphism for all w 2 W , there exists a functor
FW : C[W�1] ! A and a natural isomorphism F ' FW � Q; the map
between functor categories

(�) �Q : Funct(C[W�1], A)! Funct(C,A)

is full and faithful for every category A.

In abelian categories. There is also a notion specialized to abelian categories?

1. Talk about the homotopy category in relation to localization?

132

F.1 Analogs of localization

This section is intended to prelude a collaboration with Je↵ Seely and Michael
Robinson on sheaf theory for neural networks.

Question 37. What would be the analog of localization in a field like machine
learning? Broadly, I want to compare learning algorithms by comparing their
behavior on di↵erent subsets of data.

What if I took some proposition or “learned hypothesis” of a model and
attempted to sheafify it?

The intuition: that there is a correspondence from logic—in the form of
formal conditions and constraints—to geometry—in the form of “consistency
conditions” on data. (Perhaps this intuition would be best formalized in the
theory of topoi; unfortunately I do not have the space here to explore it.)

I am interested in the foundations of AI. My original expectation, following
some comments of McLarty [77], was that studying algebraic geometry would
lead me to topos theory, much as Lawvere’s interest in the foundations of physics
and Tierney’s interest in the foundations of topology had led them to (elemen-
tary) topos theory and to Grothendieck’s foundations of algebraic geometry.

133

A concrete example / application? I think of a functional equation (deter-
ministic equations between variables, like PDEs), a.k.a. classical causal models,
as a technique for simulation, whereas a statistical model such as a Bayesian
network is really something closer to a knowledge representation—a way of con-
necting logic with the “real world” of data. Put that way, one feeds into other:
representation and simulation. They both take place inside the person’s head,
so they’re both epistemic, in some sense. But when we do stochastic approxi-
mation of a given functional equation, the limit of all these stochastic models
may not be the original functional equation, but the “action”. Pearl: “Ev-
ery stochastic model can be emulated by many functional relationships (with
stochastic inputs), but not the other way around; functional relationships can
only be approximated, as a limiting case, using stochastic models.” [This note
is also in 2 value.]

“Contrary to what occurs in ordinary topology, one finds oneself con-
fronting a disconcerting abundance of di↵erent cohomological theo-
ries. One has the distinct impression (but in a sense that remains
vague) that each of these theories amount to the same thing, that
they “give the same results”. In order to express this intuition, of
the kinship of these di↵erent cohomological theories, I formulated
the notion of “motive” associated to an algebraic variety. By this
term, I want to suggest that it is the “common motive” (or “common
reason”) behind this multitude of cohomological invariants attached
to an algebraic variety, or indeed, behind all cohomological invari-
ants that are a priori possible.” - Grothendieck

G Motives

An organizing principle for a field is not merely a classification of objects (e.g.
an ontology) but a means of comparing, combining, and composing tools and
methods in the field. We have seen spectra, spectral sequences, and derived
categories play this role in algebraic topology, as the governing principle for
constructing and relating various cohomology theories. Motives are the corre-
sponding objects in algebraic geometry, and they form a lens through which to
view the rich history of the subject.

A few ways of thinking about motives:

1. the extension of the theory of spectra in algebraic topology to algebraic
geometry

2. the purely structural theory of synthetic notions like points, lines, projec-
tive planes, and so on (which is supported if we think of ‘motivic’ equations
with coe�cients in algebraic cycles, as comes up in the definition of the
motivic Galois group)

3. (something on Voevodsky’s reference to “Grassmann’s theory of forms”?
In lecture.)

134

Our reason for studying motives is (1) to better understand cohomology in
algebraic geometry, (2) its historical importance vis-a-vis the standard conjec-
tures, and (3) to expand a model-theoretic analogy between formal languages
(such as in logic and KR) and ringed objects in algebraic geometry.

The goal of this section is to see how much of cohomology in algebraic
geometry may be reasonably extended from cohomology in algebraic topology,
following closely the program of Voevodsky’s A1 homotopy theory. For the
most part we will follow Voevodsky and Morel’s own exposition in [117] and
[83], along with notes by Dugger [?], Levine [?], and Dundas [32].

G.1 The emergence of sheaf theory

Cite [?, ?] for history.
Leray’s invention in 1946, “faisceau”, to capture variation in the fibers of a

projection: definition of sheaf of modules over a topological space. Leray later
described operations of sheaves (images, quotients, limits, colimits, etc.), and
linked them with spectral sequences. Diverse covering notions (carapace, flow,
flasque, injective) for sheaves, and followed by unification by Godement in 1958
of terminology, concepts.

Grothendieck’s reconstruction of algebraic geometry in light of the Weil con-
jectures: the classical Galois-Dedekind picture of Spec(V) for varieties over k
versus Grothendieck’s picture of Spec(A) of a (commutative) ring over a scheme.

Review of SGA: Grothendieck topologies: define coverings as stable fami-
lies of morphisms, and sieves (ideals of morphisms). Topology as collections
of such coverings, sieves. A site is a category with a Grothendieck topology.
Grothendieck topos: sheaves over a site. Reflexive subcategories.

G.2 The search for a universal cohomology theory

[Discuss the general relationship between algebraic topology and algebraic ge-
ometry before segueing into some historical exposition. Perhaps use the analogy
of the simple graph versus the weighted graph?]

The problem with Grothendieck’s original construction was that it was non-
constructive. Mazur [72]:

The dream, then, is of getting a fairly usable description of the
universal cohomological functor,

V ! H(V) 2 H,

with H a very concretely described category. At its best, we might
hope for a theory that carries forward the successes of the classical
theory of 1-dimensional cohomology as embodied in the theory of
the jacobian of curves, and as concretized by the theory of abelian
varieties, to treat cohomology of all dimensions. Equally important,
just as in the theory of group representations where the irreducible
representations play a primal role and have their own “logic”, we

135

might hope for a similar denouement here and study direct sum
decompositions in this category of motives, relating H(V) to irre-
ducible motives, representing cohomological pieces of algebraic va-
rieties, perhaps isolatable by correspondences, each of which might
be analyzed separately.55

Preview of the theory of motives

There is some rather intimidating technical machinery leading up to the main
theorems of today: for example, to Voevodsky’s exposition of the triangulated
category of mixed motives.

See Lurie’s 1-category perspective on (derived) schemes [69]. See also
Toen’s paper [http://arxiv.org/abs/math/0012219] on the connection between
between derived algebraic geometry and algebraic topology, via the connection
between dg-algebras and rational homotopy theory.

Definition G.1. Let C be a small category and consider the functor category S
C

of functors C ! S. Call a natural transformation X ! Y 2 S
C a pointwise weak

equivalence if for every c 2 C the map X(c)! Y (c) 2 S is a weak equivalence.

The following is Theorem 2.0.2 in [32].

Theorem G.2. The cellular inclusions give a model category structure, called
the projective structure, on S

C in which a map is a cofibration if and only if it
is a retract of a cellular inclusion.

We will use the projective structure as a foundation for further exposition.
...
[Eventually, get to a discussion of these items from [?]:
“To summarize, let S be a Noetherian scheme of finite Krull dimension.

Then we have

1. The motivic stable homotopy category SH(S)

2. For a ring ⇤, a category DA1
⇤(S). This can be thought of as a ⇤-linear

version of SH(S).

3. The category DMB(S) of Beilinson motives over S. Roughly speaking,
this is the subcategory of DA1

Q consisting of modules over the Beilinson
spectrum H⇤ (defined below). If S = Spec k, with k a perfect field,
this category is equivalent to Voevodskys triangulated category of motives
(with rational coe�cients), which is usually denoted DMQ(k).

55Schneps’ review [95] of the Grothendieck-Serre correspondence discusses this a bit: “The
first mention of motives in the letters – the first ever written occurrence of the word in this
context – occurs in Grothendieck’s letter from August 16: “I will say that something is a
‘motive’ over k if it looks like the l-adic cohomology group of an algebraic scheme over k,
but is considered as being independent of l, with its ‘integral structure’, or let us say for the
moment its Q structure, coming from the theory of algebraic cycles.”

136

4. The category DMgm(S). This is the full subcategory of compact objects
in DMB, and following Voevodsky we refer to this as the subcategory of
“geometric motives.”]

G.3 A very brief review of SGA

The following definitions are drawn mostly from Levine’s notes [32].

Definition G.3. For a commutative ringR, the spectrum ofR, denoted Spec(R),
is the set of all proper prime ideals of R, i.e.

Spec(R) := {p ⇢ R : p is prime , p 6= R}

As usual, we equip Spec(R) = X with the Zariski topology—the closed sets
are the “varieties” V (I) for any ideal I of R—and structure sheaf OX .

Example G.4. Let F be an algebraically-closed field. Then Spec(F [t]) is called
the a�ne line over F .

Definition G.5. A scheme is a ringed space (X,OX) which is locally the spec-
trum of a ring. A morphism of schemes f : (X,OX)! (Y,OY) is a morphism
of ringed spaces which is locally of the form (̂, ̃) for some homomorphism of
commutative rings : A! B.

Let X 2 Schk, and let Zn(X) denote the free abelian group on the closed
integral subschemes W of X with dimk(W) = n. An element

P
i
niWi is called

an algebraic cycle onX (of dimension n). IfX is locally equi-dimensional over k,
we let Zn(X) denote the free abelian group on the codimension n integral closed
subschemes of X. Elements of Zn(X) are algebraic cycles on X of codimension
n.

For W =
P

i
niWi 2 Zn(X) (or in Zn(X)) with all ni 6= 0, the union

S
i
|Wi|

is called the support of W , denoted |W |.

G.4 Universality

[Give definitions of correspondences, Chow groups, motives.]
In a brief note, M. Saito (quoted in [11]) delineates two general types of

cohomology theories: in the first group are the Weil-type cohomology theories
like singular, de Rham, l-adic, etc., while in the second group are the Deligne-
type cohomology theories—Holmstrom [53] calls these Bloch-Ogus theories—
these are Deligne cohomology, absolute Hodge cohomology, the absolute étale
(or continuous) cohomology, and the motivic cohomology groups, i.e. higher
Chow groups. These have di↵erent notions of “universal cohomology”: pure
motives are universal among Weil-type cohomology theories in the sense that
we can always factor the cohomology through the motive. For Deligne-type co-
homology theories, the motivic cohomology groups are universal, and these may
be constructed from a group of morphisms in the derived category of (mixed)
motives.

137

A multiplicative cohomology theory56 E is oriented if the restriction map
E2(CP1)! E2(CP1) is surjective. In particular, there is some element called
the complex orientation of E that goes to 1 2 eE2(CP1) under the restriction
map. We know that every oriented cohomology theory corresponds to a formal
group law, that complex cobordism is universal among oriented cohomology
theories, and that every formal group satisfying a condition called Landweber
exactness57 corresponds to an oriented cohomology theory.

[Expand the story about formal group laws here?]
For extraordinary cohomology theories in algebraic geometry like algebraic

cobordism or algebraic K-theory, we have no easy notion of “universality” [53].

G.5 The standard conjectures

[Plan: give a full-as-possible explanation of the third of Weil’s conjectures (the
“Riemann hypothesis”) and its connection to the standard conjectures. This will
serve as one motivation to the standard conjectures. Would it also be worth-
while to discuss Beilinson’s more recent exposition [?] relating the conjectures
to motivic t-structures? Relate to Question 9.]

56A multiplicative cohomology theory is one where E
⇤(X) is not only a graded abelian

group but a graded ring.
57Let f(x, y) be a formal group law and p a prime, vi the coe�cient of xpi in [p]f (x) =

x +f · · · +f x. If v0, ..., vi form a regular sequence for all p and i then f(x, y) is Landweber

exact.

138

H Very brief review of QBism

[It’s possible we can use QBism as an reference example when we start talk-
ing about generalized inference. Come back to this and fill it in from stan-
ford+encyclopedia+healey+quantum+bayesianism.]

This section is a brief reconstruction of my notes from a talk by Chris Fuchs.
Main goal: we want a quantum Bayesian reconstruction of quantum theory

(QT).58

QBism is related to the Bohm interpretation in the sense that it holds the
experience/epistemics of the individual as fundamental. The quantum state
lives “in the head of the agent”. A measurement device allows the agent to
perform actions {Ei} that measure the quantum system. The quantum system
Hd is a sort of “catalyst” for the information. Other agents are also just quantum
systems.

If we wipe out the agent, the quantum state goes poof! But note, Hd did
not disappear. Quantum states have no “ontic hold” on the world in QB. Note:
the standard interpretations hold that the probabilities of measurements are in
fact constraints on the world, but in QB the states are only epistemic.

In QBism, QT is a tool, not a fundamental statement about reality. But as
with other tools, you can study the tool in order to understand reality better.
Alternately, you can think of QT as just one property of all matter.

“Running across the street” is on a plane with “quantum information exper-
iment”. Except in the latter, it’s beneficial if we use the tool QT!

Can we conceive of the Born rule as an addition to good decision-making?
Claim: the Born rule is normative, not descriptive! It is not a law of nature,
since it involves some freedom; given some inputs, it does not specify a necessary
output. In other words, the Born rule is more like “try your best to...” (akin
to a religious maxim).

Of course, the Born rule looks like a description of a law of nature:

p(i) = Tr ⇢Ei.

How do we turn it into something normative? Well, remember that the Bayesian
interpretation of probability is egocentric. Probability theory itself is only a tool
that recommends you re-evaluate your decisions. Probability(x) = 1 does that
mean that x is true in an ontic sense.

Bell inequality violations supposedly demonstrate nonlocality in physical re-
ality. But QBism proposes something else! The key component of QBist recon-
struction: projections. (Missing parts of the exposition here.) Fuch’s favored
approach: he needs a POVM that can completely specify a quantum state; and
the candidate is SIC measurements. Used to define a rewritten Born rule in
terms of probabilities:

p(Dj) = (d+ 1)
X

i

p(Hi)p(Dj |Hi)� 1.

58Fuchs says something about neutral and non-neutral reconstructions of QT, and how any
QBist reconstruction will be non-neutral, but I don’t remember what he means by neutral or
non-neutral.

139

The consistency of this equation gives you a small class of GPTs; a “qplex”.
Fuchs’ challenge: quantum state space, instead of being SU(n), is just

a qplex of maximum Euclidean volume. (Criticism: how do you get inter-
subjective agreement in QBism?)

140

I Miscellaneous

I.1 Quantum error correction and it’s relationship to

Pull up notes from Felix; read Gottesman https://arxiv.org/abs/quant-ph/
0004072 on stabilizer codes, refer to notes from rethinking workshop, plus this
one from Gri�ths: http://quantum.phys.cmu.edu/QCQI/qitd213.pdf.

I.2 Homomorphic learning

Izbicki’s HLearn package [54] (the ‘H’ stands for homomorphic) is a machine
learning library written in Haskell.59 As Izbicki writes, HLearn’s “distinguishing
feature is that it exploits the algebraic properties of learning models. Every
model in the library is an instance of the HomTrainer type class, which ensures
that the batch trainer is a monoid homomorphism.”

It’s still unclear to me how a particular learning algorithm gets represented
as a monoid homomorphism. My current reading of Izbicki’s paper is that the
monoid representation doesn’t actually tell us anything interesting about the
particular learning model, i.e. it does not help us characterize and di↵erentiate
learning models. The algebraic representation is really there to help us control
composition and especially parallelization of learning algorithms. Many con-
structions in Haskell have this nice functorial character, so the result is quite
believable. However, I need to study the paper more carefully; I haven’t been
able to actually run the accompanying code since there seems to be a bug that
prevents it from compiling (last checked: mid-December 2014). Many learning
models such as perceptrons, decisions trees, and a variety of clustering algo-
rithms have already been implemented in the package.

HLearn is also connected to and complements other research on the pro-
gramming structures that implement categorical approaches to probability, i.e.
“probability as a monad” [?].

Question 38. The direction of this research is very exciting; can we eventually
construct, concretely, without recourse to the voodoo magic of higher algebra,
an “algebraic” category of learning algorithms?

I.3 Geometric complexity theory

In this section, we give some preliminary discussion (drawn largely from [4]) of
the algebraic P vs. NP problem and Valiant’s use of the permanent function to
characterize the AlgNP class. Eventually, I would like to discuss Mulmumey’s
interpretation of Valiant’s AlgP 6= AlgNP conjecture in the language of geo-
metric invariant theory.

The determinant and permanent functions play a vital role in the world of
algebraic circuits, since they are complete problems for two important classes.

59Haskell is a functional programming language which is also the basis for Agda, the proof
assistant mentioned in Section A.

141

https://arxiv.org/abs/quant-ph/0004072
https://arxiv.org/abs/quant-ph/0004072
http://quantum.phys.cmu.edu/QCQI/qitd213.pdf

(A decision problem P is said to be complete for a set of decision problems S if
P is a member of S and every problem in S can be reduced to P .) To give the
definition, we need the notion of degree of a multivariate polynomial, namely,
the minimum d such that each monomial term

Q
i
xdi
i

satisfies
P

i
di d. A

family of polynomials in x1, x2, ..., xn is poly-bounded if the degree is at most
O(nc) for some constant c > 0.

Definition I.1. The classAlgP is the class of polynomials of polynomial degree
that are computable by arithmetic formulae (using no ÷) of polynomial size.

Definition I.2. AlgNP is the class of polynomials of polynomial degree that
are definable as

f(x1, x2, ..., xn) =
X

e2{0,1}m�n

gn(x1, x2, ..., xn, en+1, ..., em)

where gn 2 AlgP and m is polynomial in n.

Definition I.3. A function f(x1, ...xn) is a projection of a function g(y1, y2, ..., ym)
if there is a mapping � from {y1, y2, ..., ym} to {0, 1, x1, x2, ..., xn} such that
f(x1, x2, ..., xn) = g(�(y1),�(y2), ...,�(ym)). We say that f is projection-reducible
to g if f is a projection of g.

Theorem I.4 (Valiant). Every polynomial on n variables that is computable by
a circuit of size u is projection reducible to the determinant function (over the
same field) on u+2 variables. Every function in AlgNP is projection reducible
to the permanent function (over the same field).

From MathOverflow: Mulmuley’s key idea is to use symmetries to organize
not the functions themselves, but to organize the algebro-geometric properties
of these functions as captured by particular polynomials p; this enables the use
of representation theory in attempting to find such a p.

I.4 Asynchoronous computation

In a landmark 1999 paper, Herlihy and Shavits [51] introduced a topological for-
malism for analyzing a particular class of problems in the field of asynchronous
computation (think: multiprocessor CPUs, RAM, online networking, or most
methods of parallel computation). In such problems, we start with some set of
computational processes each of which starts with a private input value, and
we wish to organize their interactions so that they all halt with some specified
output value. However, processes may fail, or be delayed, and these failures
may impede the computations of other processes. A relation � ⇢ ~I ⇥ ~O of
input values and output values is called a task, and a program that solves the
task is called a protocol. A major part of the theory is to design a protocol that
is wait-free: a wait-free protocol guarantees that a nonfaulty process will halt
with an acceptable output value in a fixed number of steps, regardless of delays
or failures by other processes.

142

Following Herlihy and Shavits, we assume that a computational process is
something that reads and write variables to (shared) memory, usually multiple
times during a protocol.

The key step in their paper was to associate to every task and to every
protocol a particular simplicial complex. In the formalism, a protocol solves a
task if and only if there exists a simplicial map from the protocol complex to the
task complex; the main theorem states that the protocol is wait-free if and only
if the simplicial map satisfies a relatively simple coloring condition on simplices.
Specifically:

Theorem I.5 (Asynchronous Computability Theorem). A decision task (I,O,�)
[these are all complexes representing the task] has a wait-free protocol using read-
write memory if and only if there exists a chromatic subdivision � of I and a
color-preserving simplicial map

µ : �(I)! O

such that for each simplex S in �(I), µ(S) 2 �(carrier(S, I).

In a particularly crisp and elegant result leading up to the main theorem,
the authors show that every wait-free protocol corresponds to a contractible
simplicial complex I.

Question 39. According to the nLab, it was John Roberts who originally
understood (in the context of QFT) that general cohomology is about coloring
simplices in 1-categories. What does this mean exactly, and can we apply this
intuition to the coloring condition in [51]’s main theorem? If so, can we obtain
some sort of generalization?

Question 40. One of the key ideas here is that just as the consequences of single
failures in an asynchronous computation could be represented by graphs [?], the
consequences of multiple failures could be represented by simplicial complexes.
How does this idea accord with the idea from sample compression, that one-
inclusion graphs can be replaced by simplicial complexes? Is there any deeper
reason for the similarity?

Example: unique-id

For example, consider the unique-id task: each participating process Pi 2

{0, ..., n} has an input xi = 0 and chooses an output yi 2 {0, ..., n} such that
for any pair Pi 6= Pj , yi 6= yj . This task has a trivial wait-free solution.

Example: fetch-increment

In this task, each participating process Pi 2 {0, ..., n} has an input xi = 0 and
chooses a unique output yi 2 {0, ..., n} such that (1) for some participating index
i, yi = 0, and (2) for 1 k n, if yi = k, then, for some j i, yj = k� 1. This
task has no wait-free solution in read/write memory if one or more processes
can fail.

143

Question 41. Why?

144

References

[1] Samson Abramsky, Rui Soares Barbosa, Kohei Kishida, Raymond Lal,
and Shane Mansfield. Contextuality, cohomology and paradox. In 25th
EACSL Annual Conference on Computer Science Logic, 2015.

[2] Samson Abramsky and Adam Brandenburger. The sheaf-theoretic struc-
ture of non-locality and contextuality. New Journal of Physics, 13, 2011.

[3] Samson Abramsky, Shane Mansfield, and Rui Soares Barbosa. The coho-
mology of non-locality and contextuality. In Bart Jacobs, Peter Selinger,
and Bas Spitters, editors, 8th Interntional Workshop on Quantum Physics
and Logic (QPL 2011), 2011.

[4] Sanjeev Arora and Boaz Barak. Complexity Theory: A Modern Approach.
Cambridge University Press, 2006.

[5] Michael Atiyah. How research is carried out. Bulletin of the International
Mathematical Association, 10, 1974.

[6] Michael Atiyah. Topological quantum field theories. Publications
mathématiques de l’I.H.É.S., 68:175–186, 1988.

[7] Steve Awodey. Structuralism, invariance, and univalence. Technical re-
port, Munich Center for Mathematical Philosophy, 2014.

[8] John C. Baez and James Dolan. Higher-dimensional algebra and topologi-
cal quantum field theory. Journal of Mathematical Physics, 36:6073–6105,
1995.

[9] David Balduzzi. Distributed learning: Foundations and applications. Re-
search statement.

[10] David Balduzzi. On the information-theoretic structure of distributed
measurements. In EPTCS, volume 88, 2012.

[11] Luca Barbiere-Viale. A pamphlet on motivic cohomology. Milan journal
of mathematics, 73(1):53–73, 2005.

[12] Andrew J. Blumberg and Michael A. Mandell. Quantitative homotopy
theory in topological data analysis. Foundations of Computational Math-
ematics, 13(6):885–911, 2013.

[13] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K.
Warmuth. Learnability and the vapnik-chervonenkis dimension. Journal
of the ACM, 36(4):929–965, 1989.

[14] Valentino Braitenberg. Vehicles: Experiments in synthetic psychology.
MIT Press, 1986.

145

[15] Spencer Breiner, Eswaran Subrahmanian, and Ram D. Sriram. Modeling
the internet of things: A foundational approach. In Proceedings of the
Seventh International Workshop on the Web of Things, November 2016.

[16] Rodney Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1), 1986.

[17] Rodney Brooks. Intelligence without representation. Artificial Intelli-
gence, 47:139–159, 1991.

[18] Sebastien Bulbeck. Komlos conjecture, gaussian correlation conjecture,
and a bit of machine learning.

[19] Gunnar Carlsson. Topology and data. Bulletin of the American Mathe-
matical Society, 46:255–308, 2009.

[20] Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. Mathematical
foundations for a compositional distributional model of meaning. arXiv
preprint arXiv:1003.4394, 2010.

[21] Ernest Davis and Leora Morgenstern. Introduction: Progress in formal
commonsense reasoning. Artificial Intelligence, 2004.

[22] Randall Davis, Howard Shrobe, and Peter Szolovits. What is a knowledge
representation? AI Magazine, 14:17–33, 1993.

[23] Aise Johan de Jong. Weil cohomology theories. Accessed from
http://www.math.columbia.edu/~dejong/seminar/note_on_weil_
cohomology.pdf, 2007.

[24] Daniel C. Dennett. The Intentional Stance. A Bradford Book, 1989.

[25] Thomas G. Dietterich. Learning at the knowledge level. Machine Learn-
ing, 1986.

[26] Thomas G. Dietterich. Ensemble methods in machine learning. InMultiple
Classifier Systems, 2000.

[27] Jean Dieudonné. The historical development of algebraic geometry. The
American Mathematical Monthly, 79(8):827–866, October 1972.

[28] Pedro Domingos. A unified bias-variance decomposition and its applica-
tions. In ICML, 2000.

[29] Pedro Domingos. Structured machine learning: Ten problems for the
next ten years. In Proc. of the Annual Intl. Conf. on Inductive Logic
Programming, 2007.

[30] Hubert L. Dreyfus. Why Heideggerian AI failed and how fixing it would
require making it more Heideggerian. Artificial Intelligence, 171:1137–
1160, 2007.

146

http://www.math.columbia.edu/~dejong/seminar/note_on_weil_cohomology.pdf
http://www.math.columbia.edu/~dejong/seminar/note_on_weil_cohomology.pdf

[31] Jean-Guillaume Dumas, Frank Heckenbach, David Saunders, and Volkmar
Welker. Computing simplicial homology based on e�cient Smith normal
form algorithms. In Algebra, Geometry and Software Systems, pages 177–
206. Springer, 2003.

[32] Bjorn Ian Dundas, Marc Levine, Vladimir Voevodsky, Oliver Röndigs, and
Paul Arne Ostvaer. Motivic Homotopy Theory: Lectures at a Summer
School in Nordfjordeid, Norway, August 2002. Springer-Verlag, 2002.

[33] Herbert Edelsbrunner and John Harer. Persistent homology – a survey.

[34] Andrée Charles Ehresmann and Jean-Paul Vanbremeersch. Memory Evo-
lutive Systems; Hierarchy, Emergence, Cognition. Studies in Multidisci-
plinarity. Elsevier Science, 2007.

[35] Sally Floyd. On Space-Bounded Learning and the Vapnik-Chervonenkis
Dimension. PhD thesis, University of California, Berkeley, 1989.

[36] Sally Floyd and Manfred K. Warmuth. Sample compression, learnability,
and the vapnik-chervonenkis dimension. Machine Learning, 21(3):269–
304, 1995.

[37] Jerry A. Fodor. Propositional attitudes. The Monist, 61:501–523, October
1978.

[38] Yoav Freund and Robert E. Schapire. Game theory, on-line prediction
and boosting. In Proceedings of the Ninth Annual Conference on Compu-
tational Learning Theory, pages 325–332, 1996.

[39] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of Computer
and System Sciences, 55, 1997.

[40] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic
regression: a statistical view of boosting. Annals of Statistics, 28(2):337–
407, 2000.

[41] Robert Ghrist. Barcodes: the persistent homology of data. Bulletin of the
American Mathematical Society, 45(1):61–75, 2008.

[42] Robert Ghrist. Elementary Applied Topology. CreateSpace Independent
Publishing Platform, 2014.

[43] E. Mark Gold. Language identification in the limit. Information and
Control, 10:447–474, 1967.

[44] Robert Goldblatt. Topoi: The Categorical Analysis of Logic. Dover, 2006.

[45] Odel Goldreich and Dana Ron. On universal learning algorithms. In
Impromptu Session of COLT 1996, July 1996.

147

[46] John W. Gray. Fragments of the history of sheaf theory. In Michael
Fourman, Christopher Mulvey, and Dana Scott, editors, Applications of
sheaves, pages 1–79. Springer-Verlag, 1977.

[47] Owen Gri�ths and A. C. Paseau. Isomorphism invariance and overgener-
ation. The Bulletin of Symbolic Logic, 22(4), December 2016.

[48] Misha Gromov. Ergostructures, ergologic and the universal learning prob-
lem: Chapters 1, 2, 3.

[49] Robin Hartshorne. Algebraic Geometry. Springer, 8th printing 1997 edi-
tion edition, 1977.

[50] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[51] Maurice Herlihy and Nir Shavit. The topological structure of asynchronous
computability. Journal of the ACM, 46(6):858–923, November 1999.

[52] Andreas Holmstrom. Questions and speculation on co-
homology theories in arithmetic geometry. version 1.
http://www.andreasholmstrom.org/research/Cohomology1.pdf, De-
cember 2007.

[53] Andreas Holmstrom. Ordinary vs generalized cohomology theo-
ries. https://homotopical.wordpress.com/2009/12/10/ordinary-vs-
generalized-cohomology-theories/, December 2009.

[54] Mike Izbicki. HLearn: A Machine Learning Library for Haskell. In Sym-
posium on Trends in Functional Programming, 2013.

[55] Brendan Juba. Universal Semantic Communication. PhD thesis, Mas-
sachusetts Institute of Technology, September 2010.

[56] Joel Kamnitzer. Algebraic geometry without prime ideals.
Blog post at https://sbseminar.wordpress.com/2009/08/06/
algebraic-geometry-without-prime-ideals/.

[57] Jyrki Kivinen and Manfred K. Warmuth. Boosting as entropy projec-
tion. In Proceedings of the Twelfth Annual Conference on Computational
Learning Theory, number 134-144, 99.

[58] Daniel E. Koditschek. Dynamically dexterous robots via switched and
tuned oscillators. Technical report, Artificial Intelligence Laboratory and
Controls Laboratory, University of Michigan, 1101 Beal Ave, Ann Arbor,
Michigan 48109-2110, December 1994.

[59] Maxim Kontsevich and Yiannis Vlassopoulos. Pre-calabi-yau algebras and
topological quantum field theories. November 2014.

148

https://sbseminar.wordpress.com/2009/08/06/algebraic-geometry-without-prime-ideals/
https://sbseminar.wordpress.com/2009/08/06/algebraic-geometry-without-prime-ideals/

[60] Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of diversity
in classifier ensembles and their relationship with the ensemble accuracy.
Machine Learning, 51(2), May 2003.

[61] Dima Kuzmin and Manfred K. Warmuth. Unlabeled compression schemes
for maximum classes. Journal of Machine Learning Research, 8:2047–2081,
2007.

[62] Jean Leray. Sur la forme des espaces topologiques et sur les points fixes des
représentations. Journal de Mathématiques Pures et Appliquées, 24:95–
248, 1945.

[63] Xuchun Li, Lei Wang, and Eric Sung. A study of adaboost with svm
based weak learners. In Proceedings of the International Joint Conference
on Neural Networks, 2005.

[64] Nick Littlestone. Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm. Machine Learning, 2(4):285–318, 1988.

[65] Nick Littlestone and Manfred K. Warmuth. Relating data compression
and learnability. Technical report, University of California, Santa Cruz,
1986.

[66] Rodolfo R. Llinas. I of the Vortex: From Neurons to Self. Bradford Books,
2002.

[67] Tom Lovering. Sheaf theory. September 2010.

[68] Jacob Lurie. Higher Topos Theory. Princeton University Press, 2009.

[69] Jacob Lurie. Higher algebra. 2014.

[70] Jean-Pierre Marquis. Homotopy type theory as a foundation for mathe-
matics: some philosophical remarks. Lecture for the HoTT-NYC group,
April 2014.

[71] Jon Peter May. Stable algebraic topology, 1945-1966. In I. M. James,
editor, The History of Topology. Elsevier, 1999.

[72] Barry Mazur. What is a motive? Notices of the AMS, 51(10):1214–1216,
2004.

[73] John McCarthy. An example for natural language understanding and the
ai problems it raises.

[74] James L. McClelland and Timothy Rogers. The parallel distributed pro-
cessing approach to semantic cognition. Nature Reviews Neuroscience,
4:310–322, 2003.

[75] James L. McClelland and David E. Rumelhart. Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition - Volume 1 (foun-
dations). MIT Press, 1986.

149

[76] Peter McCullagh. What is a statistical model? The Annals of Statistics,
30(5):1225–1310, 2002.

[77] Colin McLarty. The uses and abuses of the history of topos theory. British
Journal of Philosophy of Science, 41:351–375, 1990.

[78] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Sizzerman, J. Matas,
F. Scha↵alitzky, T. Kadir, and L. Van Gool. A comparison of a�ne region
detectors. International Journal of Computer Vision, 2006.

[79] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to
Computational Geometry. MIT Press, 1st edition, 1969.

[80] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations
of Machine Learning. MIT Press, 2012.

[81] Robert C. Moore. Logic and representation. Center for the Study of
Language and Information, 1995.

[82] Shay Moran and Manfred K. Warmuth. Labeled compression schemes for
extremal classes. In International Conference on Algorithmic Learning
Theory, pages 34–49, 2016.

[83] Fabien Morel and Vladimir Voevodsky. A1-homotopy theory of schemes.
Publications mathématiques de l’I.H.É.S., 90(1):45–143, 1999.

[84] Alan Newell. The knowledge level: Presidential address. AI Magazine,
2(2), 1980.

[85] Albert B. J. Noviko↵. On convergence proofs on perceptrons. In Pro-
ceedings of the Symposium on the Mathematical Theory of Automata, vol-
ume 12, pages 615–622, 1962.

[86] Natalya F. Noy. Semantic integration: A survey of ontology-based ap-
proaches. SIGMOD Record, 33(4), 2004.

[87] Brian Osserman. The weil conjectures. In Timothy Gowers, editor,
Princeton Companion to Mathematics, pages 729–732. Princeton Univer-
sity Press, 2008.

[88] Pierre-Yves Oudeyer, Adrien Baranes, and Frédéric Kaplan. Intrinsically
motivated learning of real-world sensorimotor skills with developmental
constraints. In Gianluca Baldassarre and Marco Mirolli, editors, Intrin-
sically Motivated Learning in Natural and Artificial Systems. Springer,
2013.

[89] Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge
University Press, 2009.

150

[90] Rolf Pfeifer, Max Lungarella, and Fumiya Iida. Self-organization, embod-
iment, and biologically inspired robotics. Science, 318(5853):1088–1093,
2007.

[91] Hilary Putnam. Mind, Matter, and Reality, volume 2 of Philosophical
Papers. Cambridge University Press, 1975.

[92] Michael Robinson. Sheaf and duality methods for analyzing multi-model
systems. arXiv: 1604.04647v2.

[93] Benjamin I.P. Rubinstein and J. Hyam Rubinstein. A geometric ap-
proach to sample compression. The Journal of Machine Learning Re-
search, 13(1):1221–1261, 2012.

[94] Robert E. Schapire and Yoav Freund. Boosting: Foundations and Algo-
rithms. The MIT Press, 2014.

[95] Leila Schneps. A biographical reading of the grothendieck-serre correspon-
dence. Mathematical Intelligencer, 2007.

[96] Jean-Pierre Serre. Faisceaux algébriques cohérents. The Annals of Math-
ematics, 61(2):197–278, March 1955.

[97] Jean-Pierre Serre. Algebraic Groups and Class Fields. Springer, 1988.

[98] Mike Shulman. Cohomology, July 2013.

[99] Siggraph. Evolving Virtual Creatures. Computer Graphics, July 1994.

[100] Gurjeet Singh, Facundo Mémoli, and Gunnar Carlsson. Topological meth-
ods for the analysis of high dimensional data sets and 3d object recogni-
tion. In M. Botsch and R. Pajarola, editors, Eurographics Symposium on
Point-based Graphics, 2007.

[101] David I. Spivak. Category Theory for Scientists. MIT Press, 2014.

[102] David I. Spivak and Robert E. Kent. Ologs: A categorical framework for
knowledge representation. PLoS ONE, 7(1), 2012.

[103] David I. Spivak and Joshua Z. Tan. Nesting of dynamic systems and
mode-dependent networks. Journal of Complex Networks, 5(3):389–408,
July 2017.

[104] David I. Spivak, Christina Vasilakopoulou, and Patrick Schultz. Dynam-
ical systems and sheaves. ArXiv e-prints, September 2016.

[105] Roar Bakken Stovner. On the mapper algorithm: A study of a new topo-
logical method for data analysis. Master’s thesis, NTNU Trondheim, 2012.

[106] Richard Szeliski. Computer vision: Algorithms and applications.

151

[107] Joshua Tan, Christine Kendrick, Abhisheky Dubey, and Sokwoo Rhee.
Indicator frameworks. In Proceedings of the 2nd International Workshop
on Science of Smart City Operations and Platforms Engineering, pages
19–25, 2017.

[108] Joshua Z. Tan, Andrea Censi, and David I. Spivak. A categorical theory
of design. In process.

[109] E. K. Tang, P. N. Suganthan, and X. Yao. An analysis of diversity mea-
sures. Machine Learning, 65(1):247–271, 2006.

[110] The Mathematical Society of Japan. Encyclopedic Dictionary of Mathe-
matics. The MIT Press, 4th edition, 2000.

[111] Richmond Thomason. Logic and artificial intelligence. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy. Spring 2014.

[112] The Univalent Foundations Program. Homotopy Type Theory: Univa-
lent Foundations of Mathematics. http://homotopytypetheory.org/book,
Institute for Advanced Study, 2013.

[113] Dmitry Vagner, David I. Spivak, and Eugene Lerman. Algebras of open
dynamical systems on the operad of wiring diagrams. https://arxiv.
org/abs/1408.1598.

[114] Ravi Vakil. Baby algebraic geometry seminar: An algebraic proof of
riemann-roch. February 2000.

[115] Leslie G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[116] Andrea Vedaldi. Invariant Representations and Learning for Computer
Vision. PhD thesis, UCLA, 2008.

[117] Vladimir Voevodsky. A1-homotopy theory. In Proceedings of the Inter-
national Congress of Mathematicians, volume I, pages 579–604, Berlin,
1998.

[118] Sumio Watanabe. Algebraic geometry and statistical learning theory. Cam-
bridge University Press, 2009.

[119] Charles A. Weibel. History of homological algebra. In I. M. James, editor,
The History of Topology, pages 797–836. Elsevier, 1999.

[120] Daniel M. Wolpert, Zoubin Ghahramani, and J Randall Flanagan. Per-
spectives and problems in motor learning. Trends in Cognitive Sciences,
5(11), 2001.

[121] Michal Wozniak, Manuel Grana, and Emilio Corchado. A survey of mul-
tiple classifier systems as hybrid systems. Information Fusion, 16:3–17,
2014.

152

https://arxiv.org/abs/1408.1598
https://arxiv.org/abs/1408.1598

[122] William Zeng and Philipp Zahn. Contextuality and the weak axiom in the
theory of choice. In International Symposium on Quantum Interaction,
volume 9535 of Lecture Notes in Computer Science, January 2016.

[123] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology.
Discrete and Computational Geometry, 33(2):249–274, 2005.

153

	Introduction
	How to read this essay
	Acknowledgements
	Examples of connections between AI and geometry
	Examples of questions related to AI
	A question
	Reasons for studying cohomology as an AI researcher

	Very brief review of AI
	Approach: symbolic methods
	The extension to knowledge representation, part I
	Approach: statistical inference
	Approach: connectionism
	Approach: situated cognition

	Very brief review of algebraic topology
	Axiomatics
	The category of spectra
	The derived setting
	Model categories
	Brown representability
	A list of topological constructions

	Organizing principles in algebraic geometry
	A very brief review of sheaf theory
	Good cohomology, part 1
	A very brief review of sheaf cohomology
	Coherent algebraic sheaves
	Serre duality
	Good cohomology, part 2
	The Weil conjectures

	Organizing principles in machine learning
	A very brief review of computational learning theory
	A very brief review of sample compression
	A very brief review of AdaBoost
	Sheaf cohomology for AdaBoost
	Background
	An analogy
	Cohomology
	Conjectures

	Sample compression schemes via cubical complexes
	Invariant methods for machine learning

	What is a mathematical model?
	The extension to knowledge representation, part II
	Interaction and intervention
	Invariant methods
	The role of simulation

	How to begin

	Sheaf theory for distributed systems
	A very brief review of probabilistic programming
	Learning in probabilistic programming

	A very brief review of homotopy type theory
	Very brief review of type theory
	Propositions as (some) types
	Univalent foundations

	Topological data analysis
	Persistent homology
	Persistent cohomology
	Mapper
	Quantitative homotopy

	TQFT
	Very brief review of TQFT
	A few questions
	Very brief review of neural networks

	Localization
	Analogs of localization

	Motives
	The emergence of sheaf theory
	The search for a universal cohomology theory
	A very brief review of SGA
	Universality
	The standard conjectures

	Very brief review of QBism
	Miscellaneous
	Homomorphic learning
	Geometric complexity theory
	Asynchoronous computation

