

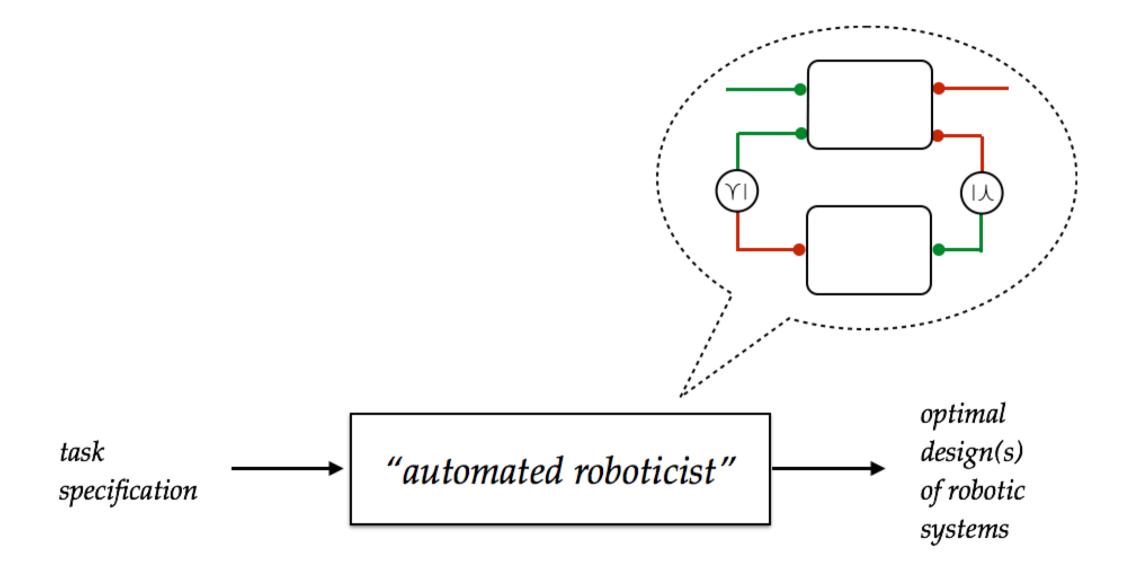
A Categorical Theory of Co-Design

Joshua Tan (MIT, Oxford, Categorical Informatics) Applied Topology Seminar, University of Pennsylvania September 6, 2016

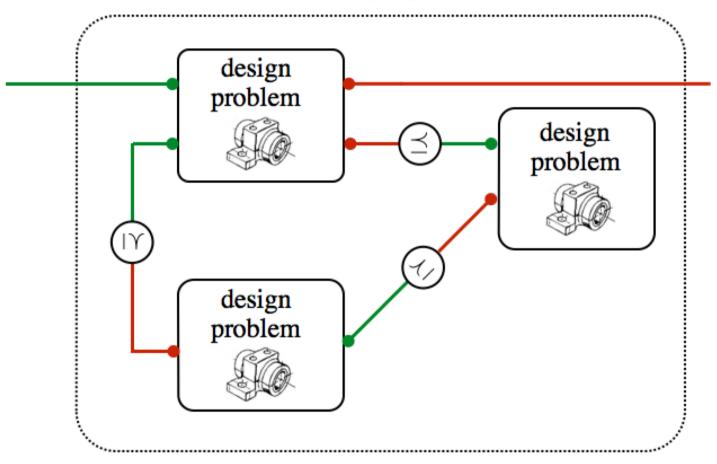
"A Mathematical Theory of Co-Design" (2015)

- Andrea Censi* (MIT)
- "A new class of optimization problems"
- "Rich enough to capture most of the irreducible complexity in robotics"
- "Possibly useful in other fields having equally complex systems to design"

*credit for graphics



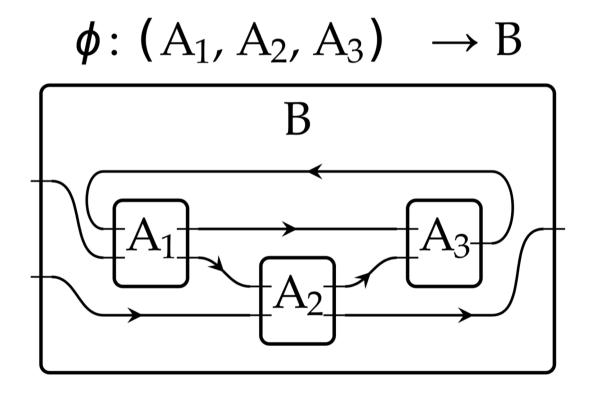
co-design problem



Wiring Diagrams in Category Theory

- David Spivak (MIT)
- Wiring diagrams can be formalized as traced symmetric monoidal categories*
- Doing so is useful because the syntax is
 - visual and intuitive, expressive, but still regular and consistent, well-tailored to complex simulations (think Simulink) **extensible**

*also as operads



Can wiring diagrams capture the semantics of **co-design diagrams**?

Tan, Censi, Spivak: Yes!

Structure of this talk

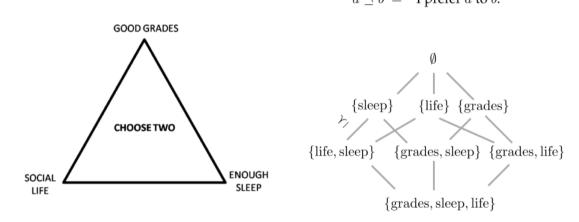
• Definition of design problems as a class of optimization problems

High-level: design problems MTC: {F, R, I, exec, eval} CTC: an object in the DP category

- Theorem 1: how to compose design problems
- Theorem 2: how to solve design problems
- Theorem 3 (in progress): computational complexity
- Future work

Partially-ordered sets

High-level: a poset is a set with a reflexive, antisymmetric, and transitive relation, $\leq a \leq b \doteq$ "I prefer *a* to *b*."

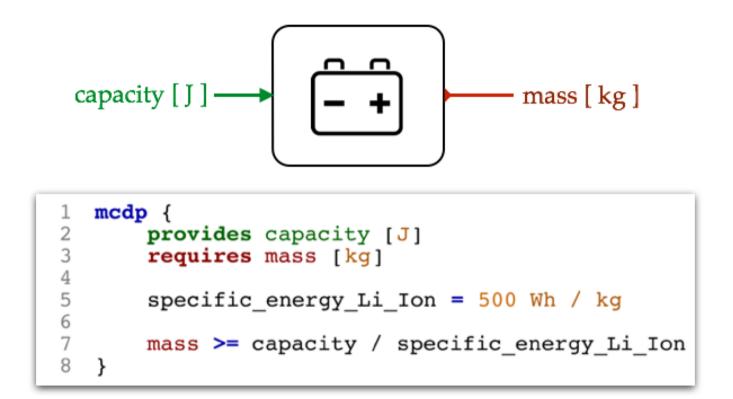


MTC: posets are just sets CTC: posets are also categories! In particular, they form a category, **Poset**

High-level: a design problem is relation between the required inputs ("functionalities") and outputs ("resources")

MTC: dp = {*F*, *R*, *I*, *exec*, *eval*}, where:

- F is a poset of functionalities,
- *R* is a poset of resources,
- *I* is a set of implementations
- exec: $I \rightarrow F$ and eval: $I \rightarrow R$



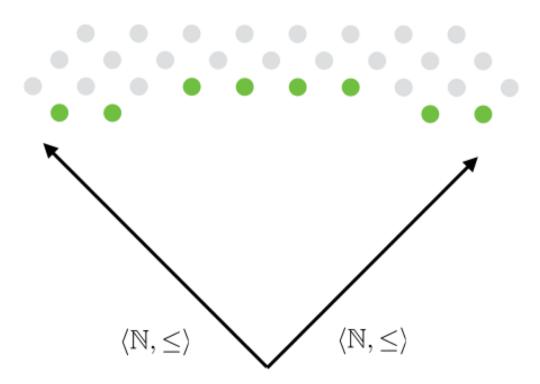
High-level: a design problem is relation between the required inputs ("functionalities") and outputs ("resources")

MTC: Further, every dp induces a map $h_{dp} : F \rightarrow \mathcal{A}R$ that represents the question: given the **minimal** functionality required, what are the **minimal** sets of resources which provide it?

• **Definition**: $S \subseteq P$ is an *antichain* if no two elements are comparable: for x, $y \in S$, $x \leq y$ implies x = y. We write $\mathcal{A}P$ for the poset of all antichains of P.

$$f \in \mathcal{F}$$
 h_{dp} $h_{dp}(f) \in \operatorname{antichains}(\mathcal{R})$

The **minimal elements** of a poset are an antichain.



High-level: a design problem is relation between the required inputs ("functionalities") and outputs ("resources")

CTC: every design problem is a morphism in the **DP** category with objects posets and morphisms design problems, where a design problem is represented as a *profunctor*

$$dp: A \rightarrow B = [dp]: A^{op} \times B \rightarrow Set$$

High-level: a design problem is relation between the required inputs ("functionalities") and outputs ("resources")

CTC: every design problem is a morphism in the DP_B category with objects posets and morphisms design problems, where a design problem is represented as a *profunctor*

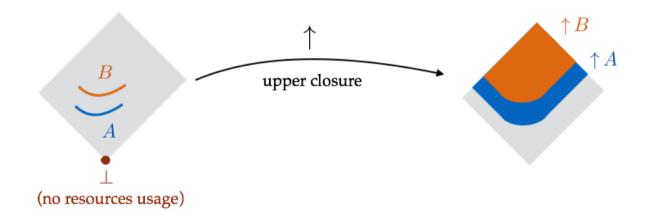
 $dp: A \rightarrow B = [dp]: A^{op} \times B \rightarrow Bool$

High-level: a design problem is "monotone" if decreasing the functionality required or increasing the resources available will never decrease the number of feasible solutions.

MTC: assume $h_{dp} : F \rightarrow \mathcal{A}R$ is *monotone*

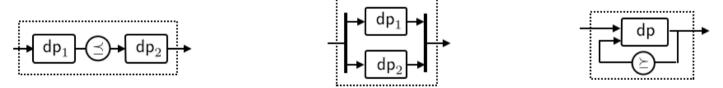
• **Definition**: a map $f : P \rightarrow Q$ between two posets is *monotone* (orderpreserving) iff $p \preccurlyeq p'$ implies $f(p) \preccurlyeq f(p')$

CTC: assume [dp]: $A^{op} \times B \rightarrow \textbf{Bool}$ is monotone, i.e. that it is an actual *(pro)functor*



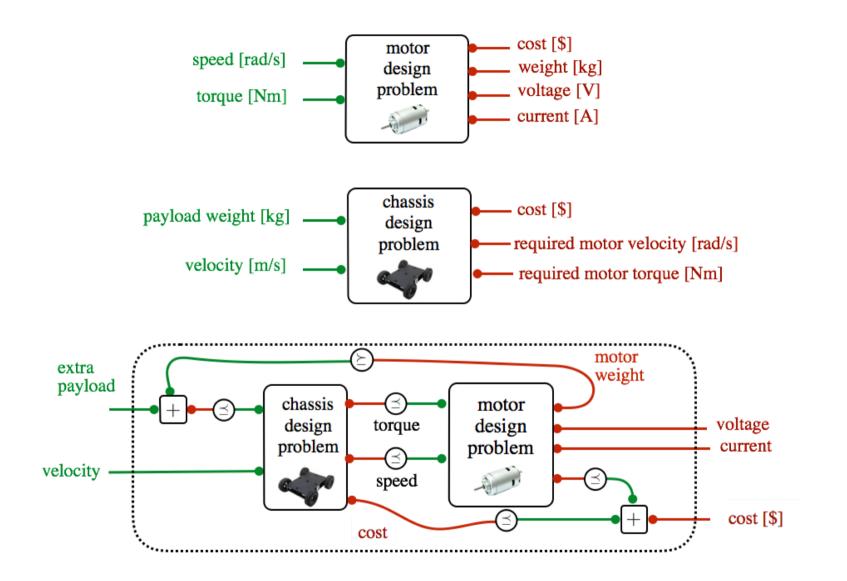
High-level: a monotone co-design problem is the composition of many design problems under three operations

MTC: three operations: "series", "parallel", and "loop" that preserve monotonicity



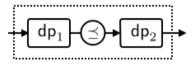
CTC: three properties of **DP**: composition, monoidal product, trace $dp_2 \circ dp_1$ " $dp_1 \times dp_2$ " "Tr(dp1)"

How do we compose design problems to form co-design problems?



"Series"

High-level: the "series" of design problems is still a design problem



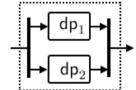
MTC:

$$\begin{array}{cccc} h_{\mathsf{series}(\mathsf{dp}_1,\mathsf{dp}_2)} : \mathcal{F}_1 & \to & \mathsf{A}\mathcal{R}_2, \\ & \mathsf{f}_1 & \mapsto & \mathrm{Min}_{\preceq_{\mathcal{R}_2}} \uparrow h_{\mathsf{dp}_2}(h_{\mathsf{dp}_1}(\mathsf{f}_1)). \end{array}$$

CTC:
$$[dp_2 \circ dp_1](a,c) = \bigvee_{b,b' \in B, b \le b'} [dp_1](a,b) \wedge [dp_2](b',c).$$

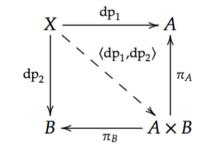
"Parallel"

High-level: the "parallel" of two design problems is still a design problem

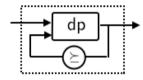


MTC: $h_{\mathsf{par}(\mathsf{dp}_1,\mathsf{dp}_2)} : \mathfrak{F}_1 \times \mathfrak{F}_2 \to \mathsf{A}(\mathfrak{R}_1 \times \mathfrak{R}_2)$ $\mathfrak{f}_1 \times \mathfrak{f}_2 \mapsto h_{\mathsf{dp}_1}(\mathfrak{f}_1) \times h_{\mathsf{dp}_2}(\mathfrak{f}_2)$

CTC: $[\langle dp_A, dp_B \rangle](x, a, b) = [dp_1](x, a) \land [dp_2](x, b).$



High-level: the "loop" of a design problem is still a design problem



MTC: $h_{loop(dp)}: \mathcal{F}_{1} \rightarrow A\mathcal{R}$ $f_{1} \mapsto \min_{\leq \mathcal{R}} \mathsf{lfp}[S \mapsto h_{dp}(f_{1}, S)],$ $S \in A\mathcal{R}$ CTC: $[\mathsf{Tr}_{A,B}^{\mathsf{C}}(dp)](a, b) = \bigvee_{c \in \mathsf{C}} [\mathsf{dp}](a, c, b, c)$

How do we **compute** design problems?

Given the **minimal** functionality required, what are the **minimal** sets of resources which provide it?

Computing from "atomic" design problems

High-level: co-design problems are computable, and have exact solutions

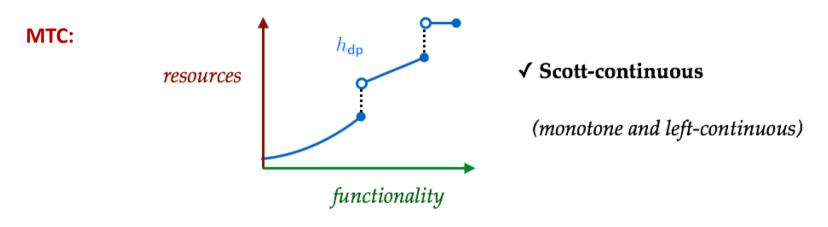
MTC: proof by recursion, since every primitive design problem (excepting loop) has an exact solution

CTC: this is a direct property of **DP**, where

$$[\mathrm{dp}_2 \circ \mathrm{dp}_1](a,c) = \bigcup_{\substack{(b,b') \in B \times B^{\mathrm{op}} \\ b \leq_B b'}} \left[[\mathrm{dp}_1](a,b) \times [\mathrm{dp}_2](b',c) \right].$$

Dealing with loops, pt. 1

High-level: to compute a (unique) least fixed point for h, we need to use an algorithm called Kleene ascent, and to run Kleene ascent, we need to assume that h is *Scott-continuous*



CTC: there is a category **DP**_s with objects DCPOs and morphisms Scott-continuous functions; alternately, it is the subcategory of **DP** whose morphisms preserve all sequential colimits

Kleene ascent

High-level: start from bot, iterate until you get to the least fixed point

MTC:

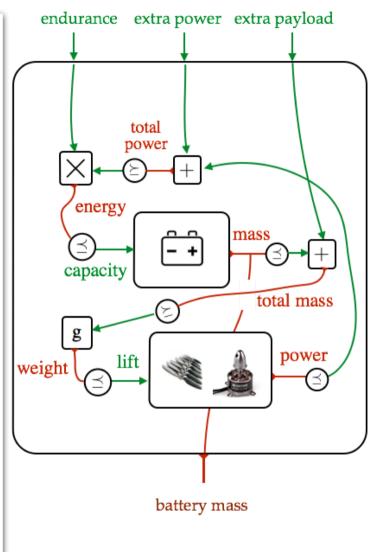
$$\Phi_{f_1} : A\mathcal{R} \rightarrow A\mathcal{R}$$

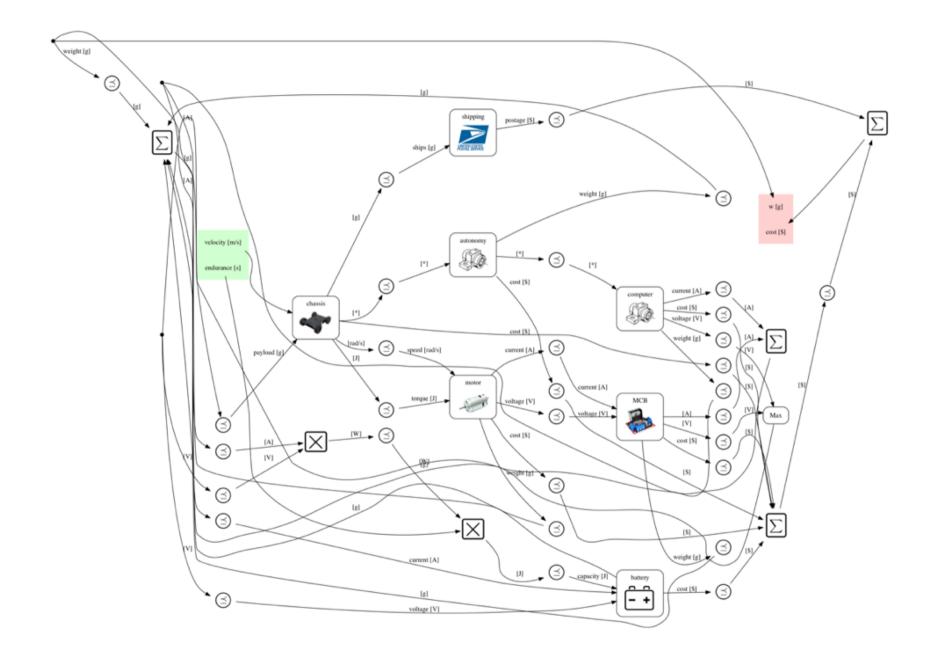
$$S \mapsto \min_{\leq \mathcal{R}} \bigcup_{\mathsf{r} \in S} h_{\mathsf{dp}}(\mathsf{f}_1, \mathsf{r}) \cap \uparrow \mathsf{r}$$

CTC: Adamek's theorem for algebras over an endofunctor (whiteboard)

How can we make computation more tractable? (in progress)

```
mcdp {
   # We need to fly for this duration
   provides endurance [s]
   # While carrying this extra payload
   provides extra payload [kg]
   # And providing this extra power
   provides extra power [W]
   # Sub-design problem: choose the battery
   sub battery = mcdp {
        # A battery provides capacity
       provides capacity [J]
        # and requires some mass to be transported
       requires mass [kg]
        # requires cost [$]
        specific energy Li Ion = 500 Wh / kg
       mass >= capacity / specific energy Li Ion
   }
   # Sub-design problem: actuation
   sub actuation = mcdp {
        # actuators need to provide this lift
        provides lift [N]
        # and will require power
       requires power [W]
        # simple model: quadratic
       c = 10.0 W/N^2
       power >= lift * lift * c
   # Co-design constraint: battery must be large enough
   power = actuation.power + extra power
   energy = power * endurance
   battery.capacity >= energy
   # Co-design constraint: actuators must be powerful enough
   gravity = 9.81 \text{ m/s}^2
   weight = (battery.mass + extra payload) * gravity
   actuation.lift >= weight
   # suppose we want to optimize for size of the battery
   requires mass for battery
}
```





Minimize the upper bound

High-level: the complexity of computing any design problem is proportional to the width and the height of the resource poset

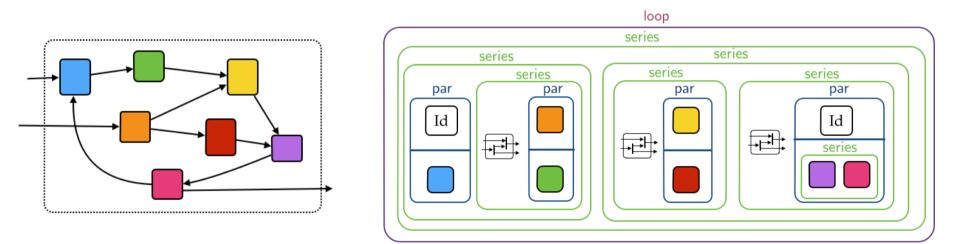
MTC: recall,
$$\Phi_{f_1} : A\mathcal{R} \to A\mathcal{R}$$

$$S \mapsto \min_{\preceq \mathcal{R}} \bigcup_{\mathsf{r} \in S} h_{\mathsf{dp}}(\mathsf{f}_1, \mathsf{r}) \cap \uparrow \mathsf{r}$$

The upper bound of this algorithm is width(R) × height(AR) × c, where c = # of times h_{dp} must be evaluated, to a max of width(R) times

Graph rewrite problem

MTC: any co-design diagram can be rewritten as a tree with leaves the primitive design problems and junctions given by "series", "parallel", and "loop". The problem: what tree is best?



CTC: how do we minimize the cost of clustering a hypergraph?

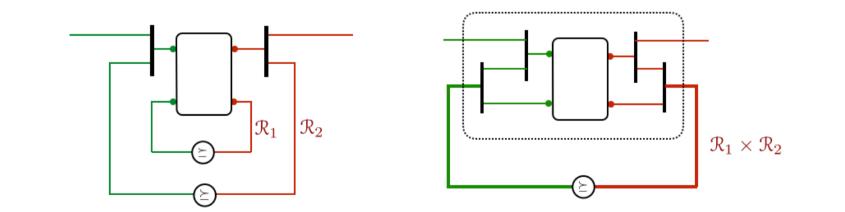
http://mathoverflow.net/questions/247852/minimizing-the-cost-of-clustering-a-hypergraph

Dealing with loops pt. 2

High-level: any dp with two (nested) loops can be reduced to a dp with one loop

MTC: direct proof

CTC: "vanishing II" axiom for trace



What else can we do with this theory?

+ other future work

Compare with convex optimization

MCDP

Convex Optimization

DCPOs monotone maps objects morphisms convex sets convex functions

composition of monotone maps is monotone compositional structure composition of convex functions is convex

Kleene ascent

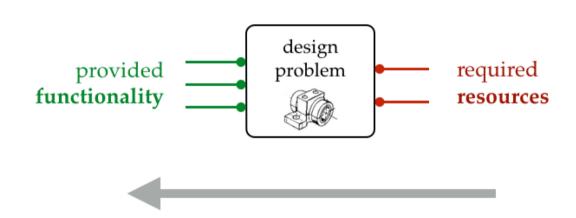
algorithms

gradient descent

Reverse arrows

CTC: DP^{op}??

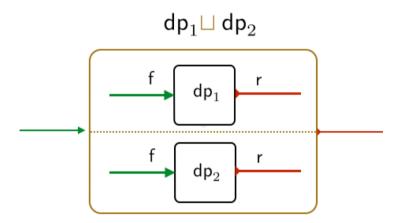
• Given the minimal functionality to be provided, what are the minimal resources required?



• Given the maximal resources that are available, what is the maximal functionality that can be provided?

Coproducts

High-level: choose between two different technologies!



CTC: The disjoint union exists and is the coproduct in **DP**

The Grothendieck construction

High-level: a category where morphisms are the individual implementations

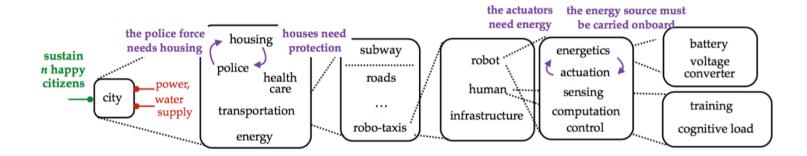
CTC: The *Grothendieck construction* on a design problem $[dp] : A^{op} \times B \rightarrow Set$ is a category $\int dp$ with objects (a,b,i) where $i \in dp(a, b)$ and morphisms $(f, \phi) : (a, b, i) \rightarrow (a', b', i')$ satisfying the following:

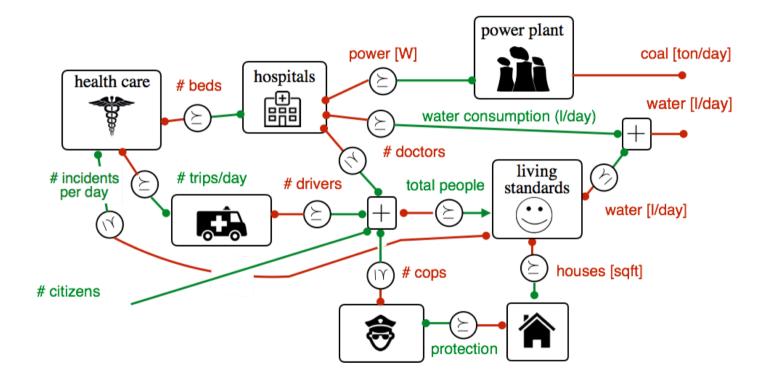
$$dp(a,b) \xrightarrow{a} dp(a',b')$$

$$(a,b) \xrightarrow{J} (a',b')$$

Other future work

- A "differential" on design problems so that we can model questions like "in which design problem should I invest time or R&D grants"?
- Examples beyond robotics?





Thank you!

For more, see <u>mcdp.mit.edu</u>.