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“A Mathematical Theory of Co-Design” (2015)

• Andrea Censi* (MIT)
• “A new class of optimization problems”
• “Rich enough to capture most of the irreducible complexity in 

robotics”
• “Possibly useful in other fields having equally complex systems to 

design”

*credit for graphics







Wiring Diagrams in Category Theory

• David Spivak (MIT)
• Wiring diagrams can be formalized as traced symmetric monoidal 

categories*
• Doing so is useful because the syntax is 

visual and intuitive,
expressive,
but still regular and consistent, 
well-tailored to complex simulations (think Simulink) 
extensible

*also as operads





Can wiring diagrams capture the 
semantics of co-design diagrams?
Tan, Censi, Spivak: Yes!



Structure of this talk

• Definition of design problems as a class of optimization problems

• Theorem 1: how to compose design problems
• Theorem 2: how to solve design problems
• Theorem 3 (in progress): computational complexity
• Future work

High-level: design problems
MTC: {F, R, I, exec, eval}
CTC: an object in the DP
category



Partially-ordered sets

High-level: a poset is a set with a reflexive, antisymmetric, and transitive relation, 
≼

MTC: posets are just sets
CTC: posets are also categories! In particular, they form a category, Poset



Monotone Co-Design Problems

High-level: a design problem is relation between the required inputs 
(“functionalities”) and outputs (“resources”)

MTC: dp = {F, R, I, exec, eval}, where:
• F is a poset of functionalities, 
• R is a poset of resources,
• I is a set of implementations
• exec: I → F and eval: I → R





Monotone Co-Design Problems

High-level: a design problem is relation between the required inputs 
(“functionalities”) and outputs (“resources”)

MTC: Further, every dp induces a map hdp : F → AR that represents the 
question: given the minimal functionality required, what are the 
minimal sets of resources which provide it?

• Definition: S ⊆ P is an antichain if no two elements are comparable: for x, y ∈
S, x ≼ y implies x = y. We write AP for the poset of all antichains of P.



The minimal elements of a poset are an antichain.



Monotone Co-Design Problems

High-level: a design problem is relation between the required inputs 
(“functionalities”) and outputs (“resources”)

CTC: every design problem is a morphism in the DP category with 
objects posets and morphisms design problems, where a design 
problem is represented as a profunctor

dp : A → B =               [dp]: Aop × B → Set



Monotone Co-Design Problems

High-level: a design problem is relation between the required inputs 
(“functionalities”) and outputs (“resources”)

CTC: every design problem is a morphism in the DPB category with 
objects posets and morphisms design problems, where a design 
problem is represented as a profunctor

dp : A → B =               [dp]: Aop × B → Bool



Monotone Co-Design Problems

High-level: a design problem is “monotone” if decreasing the 
functionality required or increasing the resources available will never 
decrease the number of feasible solutions.

MTC: assume hdp : F → AR is monotone
• Definition: a map f : P → Q between two posets is monotone (order-

preserving) iff p ≼ p’ implies f(p) ≼ f(p’)

CTC: assume [dp]: Aop × B → Bool is monotone, i.e. that it is an actual 
(pro)functor





Monotone Co-Design Problems

High-level: a monotone co-design problem is the composition of many 
design problems under three operations

MTC: three operations: “series”, “parallel”, and “loop” that preserve 
monotonicity

CTC: three properties of DP: composition, monoidal product, trace
dp2 ◦ dp1 “dp1 × dp2”             “Tr(dp1)”



How do we compose design 
problems to form co-design 
problems?





“Series”

High-level: the “series” of design problems is still a design problem

MTC:

CTC:



“Parallel”

High-level: the “parallel” of two design problems is still a design 
problem

MTC:

CTC:



“Loop”

High-level: the “loop” of a design problem is still a design problem

MTC:

CTC:



How do we compute design 
problems?
Given the minimal functionality required, what are the minimal sets of resources 
which provide it?



Computing from “atomic” design problems

High-level: co-design problems are computable, and have exact 
solutions

MTC: proof by recursion, since every primitive design problem 
(excepting loop) has an exact solution

CTC: this is a direct property of DP, where



Dealing with loops, pt. 1

High-level: to compute a (unique) least fixed point for h, we need to use an algorithm called Kleene 
ascent, and to run Kleene ascent, we need to assume that h is Scott-continuous

MTC:

CTC: there is a category DPS with objects DCPOs and morphisms Scott-continuous functions; 
alternately, it is the subcategory of DP whose morphisms preserve all sequential colimits



Kleene ascent

High-level: start from bot, iterate until you get to the least fixed point

MTC:

CTC: Adamek’s theorem for algebras over an endofunctor (whiteboard)



How can we make computation 
more tractable? (in progress)







Minimize the upper bound

High-level: the complexity of computing any design problem is 
proportional to the width and the height of the resource poset

MTC: recall, 

The upper bound of this algorithm is width(R) × height(AR) × c, where
c = # of times hdp must be evaluated, to a max of width(R) times



Graph rewrite problem

MTC: any co-design diagram can be rewritten as a tree with leaves the primitive design problems 
and junctions given by “series”, “parallel”, and ”loop”. The problem: what tree is best?

CTC: how do we minimize the cost of clustering a hypergraph?
http://mathoverflow.net/questions/247852/minimizing-the-cost-of-clustering-a-hypergraph



Dealing with loops pt. 2

High-level: any dp with two (nested) loops can be reduced to a dp with 
one loop
MTC: direct proof
CTC: “vanishing II” axiom for trace



What else can we do with this 
theory?
+ other future work



Compare with convex optimization

MCDP

DCPOs
monotone maps

composition of monotone 
maps is monotone

Kleene ascent

objects
morphisms

compositional 
structure

algorithms

Convex Optimization

convex sets
convex functions

composition of convex 
functions is convex

gradient descent



Reverse arrows

CTC: DPop??



Coproducts

High-level: choose between two different technologies!

CTC: The disjoint union exists and is the coproduct in DP



The Grothendieck construction

High-level: a category where morphisms are the individual 
implementations

CTC: The Grothendieck construction on a design problem [dp] : Aop × B 
→ Set is a category ∫dp with objects (a,b,i) where i ∈ dp(a, b) and 
morphisms ( f , φ) : (a, b, i) → (aʹ, bʹ, iʹ) satisfying the following: 



Other future work

• A “differential” on design problems so that we can model questions 
like “in which design problem should I invest time or R&D grants”?
• Examples beyond robotics?





Thank you!
For more, see mcdp.mit.edu.

http://mcdp.mit.edu/

